Skip to main content

The Intestinal Microbiota and Probiotics

  • Chapter
  • First Online:

Abstract

The human microbiota undergoes changes throughout life. From being sterile in a foetus, the gastrointestinal tract of a newborn child is rapidly colonized with bacteria from both the mother and the environment. A less complex microbiota dominates during the first two years of life where after a more complex composition of the microbiota is established in adults. The bacterial composition undergoes changes again in elderly by factors related to ageing, including reduced mobility and intestinal functionality. However, throughout the human life cycle, intrinsic factors such as genetics, aging and non-infectious diseases are not the only ones influencing the composition and activity of the intestinal microbiota. Also external events like diet, infectious diseases and medicines have an impact on the microbiota.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adlerberth I, Lindberg E, Aberg N, Hesselmar B, Saalman R, Strannegård I, Wold A (2010) Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: an effect of hygienic lifestyle? Pediatr Res 59(1):96–101

    Google Scholar 

  • Ahrne S, Lonnermark E, Wold AE, Aberg N, Hesselmar B, Saalman R, Strannegard IL, Molin G, Adlerberth I (2005) Lactobacilli in the intestinal microbiota of Swedish infants. Microb Infect 7(11–12):1256–1262

    Google Scholar 

  • Alander M, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T, von Wright A (1997) Recovery of Lactobacillus rhamnosus GG from human colonic biopsies. Lett Appl Microbiol 24(5):361–364

    PubMed  CAS  Google Scholar 

  • Amor KB, Breeuwer P, Verbaarschot P, Rombouts FM, Akkermans AD, de Vos WM, Abee T (2002) Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead Bifidobacterium cells during bile salt stress. Appl Environ Microbiol 68(11):5209–5216

    PubMed  Google Scholar 

  • Asahara T, Takahashi M, Nomoto K, Takayama H, Onoue M, Morotomi M, Tanaka R, Yokokura T, Yamashita N (2003) Assessment of safety of Lactobacillus strains based on resistance to host innate defence mechanisms. Clin Diagn Lab Immunol 10(1):169–173

    PubMed  Google Scholar 

  • Bartosch S, Fite A, Macfarlane GT, McMurdo MET (2004) Characterization of bacterial communities in faeces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the faecal microbiota. Appl Environ Microbiol 70(6):3575–3581

    PubMed  CAS  Google Scholar 

  • Bevilacqua L, Ovidi M, Di Mattia E, Trovatelli LD, Canganella F (2003) Screening of Bifidobacterium strains isolated from human faeces for antagonistic activities against potentially bacterial pathogens. Microbiol Res 158(2):179–185

    PubMed  CAS  Google Scholar 

  • Boehm G, Stahl B, Jelinek J, Knol J, Miniello V, Moro GE (2005) Prebiotic carbohydrates in human milk and formulas. Acta Paediatr Suppl 94(449):18–21

    PubMed  Google Scholar 

  • Bovee-Oudenhoven IMJ, ten Bruggencate SJM, Lettink-Wissink MLG, van der Meer R (2003) Dietary fructo-oligosaccharides and lactulose inhibit intestinal colonisation but stimulate translocation of Salmonella in rats. Gut 52:1572–1578

    PubMed  CAS  Google Scholar 

  • Braat H, van den Brande J, van Tol E, Hommes D, Peppelenbosch M, van Deventer S (2004) Lactobacillus rhamnosus induces peripheral hyporesponsiveness in stimulated CD4+ T cells via modulation of dendritic cell function. Am J Clin Nutr 80(6):1618–1625

    PubMed  CAS  Google Scholar 

  • Burns AJ, Rowland IR (2004) Antigenotoxicity of probiotics and prebiotics on faecal water-induced DNA damage in human colon adenocarcinoma cells. Mutat Res 551(1–2):233–243

    PubMed  CAS  Google Scholar 

  • Canani RB, Cirillo P, Roggero P, Romano C, Malamisura B, Terrin G, Passariello A, Manguso F, Morelli L, Guarino A (2006) Therapy with gastric acidity inhibitors increases the risk of acute gastroenteritis and community-acquired pneumonia in children. Pediatrics 117(5):e817–e820

    PubMed  Google Scholar 

  • Chen JJ, Cai W, Feng Y (2007) Development of intestinal bifidobacteria and lactobacilli in breast-fed neonates. Clin Nutr 26(5):559–566

    PubMed  CAS  Google Scholar 

  • Choi SS, Kim Y, Han KS, You S, Oh S, Kim SH (2006) Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett Appl Microbiol 42(5):452–458

    PubMed  CAS  Google Scholar 

  • Collado MC, Meriluoto J, Salminen S (2007) Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett Appl Microbiol 45(4):454–460

    PubMed  CAS  Google Scholar 

  • Daniel C, Poiret S, Goudercourt D, Dennin V, Leyer G, Pot B (2006) Selecting lactic acid bacteria for their safety and functionality by use of a mouse colitis model. Appl Environ Microbiol 72(9):5799–5805

    PubMed  CAS  Google Scholar 

  • de Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv Biochem Eng/Biotechnol 111:1–66

    Google Scholar 

  • Dekker JW, Wickens KW, Black PN, Stanley TV, Mitchell EA, Fitzharris P, Tannock GW, Purdie G, Crane J (2009) Safety aspects of probiotic bacterial strains Lactobacillus rhamnosus HN001 and Bifidobacterium animalis subsp. lactis HN019 in human infants aged 0–2 years. Int Dairy J 19:149–154

    CAS  Google Scholar 

  • Dobson AE, Sanozky-Dawes RB, Klaenhammer TR (2007) Identification of an operon and inducing peptide involved in the production of lactacin B by Lactobacillus acidophilus. J Appl Microbiol 103(5):1766–1778

    PubMed  CAS  Google Scholar 

  • Drakoularakou A, Tzortzis G, Rastall RA, Gibson GR (2010) A double-blind, placebo-controlled, randomized human study assessing the capacity of a novel galacto-oligosaccharide mixture in reducing travellers’ diarrhoea. Eur J Clin Nutr 64:146–152

    PubMed  CAS  Google Scholar 

  • Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D, O’Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiely B, O’Sullivan GC, Shanahan F, Collins JK (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73(2 Suppl):386S–392S

    PubMed  CAS  Google Scholar 

  • Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67(4):1628–1635

    PubMed  CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the Human Intestinal Microbial Flora. Science 308(5728):1635–1638

    PubMed  Google Scholar 

  • EFSA (2007) European Food Safety Authority Scientific Committee (EFSA) public consultation on the Qualified Presumption of Safety (QPS) approach for the safety assessment of microorganisms deliberately added to food and feed. Annex 3: Assessment of gram positive non-sporulating bacteria with respect to a qualified presumption of safety. http://www.efsa.europa.eu/en/science/sc_commitee/sc_consultations/sc_consultation_qps.html

  • El Nezami H, Kankaanpää P, Salminen S, Ahokas J (1998) Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem Toxicol 36(4):321–326

    PubMed  CAS  Google Scholar 

  • Enck P, Zimmermann K, Rusch K, Schwiertz A, Klosterhalfen S, Frick J (2009) The effects of maturation on the colonic microflora in infancy and childhood. Gastroenterol Res Pract. Published online 16 Sept 2009, doi:10.1155/2009/752401

    Google Scholar 

  • Engelbrektson AL, Nguyen HD, Lung DY, Korzenik JR, Sanders ME, Leyer G, Klaenhammer TR, Kitts CL (2005) The effect of probiotics on the species distribution of Bifidobacterium and Lactobacillus in healthy subjects undergoing antibiotic therapy. Conference Proceeding

    Google Scholar 

  • Fanaro S, Chierici R, Guerrini P, Vigi V (2003) Intestinal microflora in early infancy: composition and development. Acta Paediatr 92:48–55

    Google Scholar 

  • FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. http://www.who.int/foodsafety/publications/fs_management/probiotics2/en/. pp 1–11

  • Favier CF, Vaughan EE, de Vos WM, Akkermans ADL (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68(1):219–226

    PubMed  CAS  Google Scholar 

  • Finegold SM, Sutter VL, Mathisen GE (1983) Normal indigenous intestinal flora. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic Press, New York, pp 3–31

    Google Scholar 

  • Foligne B, Nutten S, Grangette C, Dennin V, Goudercourt D, Poiret S, Dewulf J, Brassart D, Mercenier A, Pot B (2007) Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World J Gastroenterol 13(2):236–243

    PubMed  Google Scholar 

  • Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human faeces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64(9):3336–3345

    PubMed  CAS  Google Scholar 

  • Fujiwara S, Seto Y, Kimura A, Hashiba H (2001) Intestinal transit of an orally administered streptomycin-rifampicin-resistant variant of Bifidobacterium longum SBT2928: its long-term survival and effect on the intestinal microflora and metabolism. J Appl Microbiol 90(1):43–52

    PubMed  CAS  Google Scholar 

  • Gavini F, Cayuela C, Antoine J-M, Lecoq C, Lefebvre B, Membreacute J-M, Neut C (2001) Differences in the distribution of bifidobacterial and enterobacterial species in human faecal microflora of three different (children, adults, elderly) age groups. Microb Ecol Health Dis 13(1):40–45

    Google Scholar 

  • Gill HS, Rutherfurd KJ, Prasad J, Gopal PK (2000) Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br J Nutr 83(2):167–176

    PubMed  CAS  Google Scholar 

  • Gill HS, Rutherfurd KJ, Cross ML, Gopal PK (2001) Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nut 74(6):833–839

    CAS  Google Scholar 

  • Glück U, Gebbers J-O (2003) Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae, and β-hemolytic streptococci). Am J Clin Nutr 77:517–520

    PubMed  Google Scholar 

  • Goldin BR, Gorbach SL (1984) The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity. Am J Clin Nutr 39(5):756–761

    PubMed  CAS  Google Scholar 

  • Gopal P, Prasad J, Gill HS (2003) Effects of the consumption of Bifidobacterium lactis HN019 (DR10™) and galacto-oligosaccharides on the microflora of the gastrointestinal tract in human subjects. Nutr Res 23:1313–1328

    CAS  Google Scholar 

  • Gueimonde M, Delgado S, Baltasar M, Ruas-Madiedo P, Margolles A, los Reyes-Gavilan CG (2004) Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks. Food Res Int 37:839–850

    CAS  Google Scholar 

  • Guigoz Y, Dore J, Schiffrin EJ (2008) The inflammatory status of old age can be nurtured from the intestinal environment. Curr Opin Clin Nutr Metab Care 11(1):13–20

    PubMed  Google Scholar 

  • Haller D, Blum S, Bode C, Hammes WP, Schiffrin EJ (2000) Activation of human peripheral blood mononuclear cells by nonpathogenic bacteria in vitro: evidence of NK cells as primary targets. Infect Immun 68(2):752–759

    PubMed  CAS  Google Scholar 

  • Halttunen T, Salminen S, Tahvonen R (2007) Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Int J Food Microbiol 114(1):30–35

    PubMed  CAS  Google Scholar 

  • Hamilton-Miller JM, Shah S, Winkler JT (1999) Public health issues arising from microbiological and labelling quality of foods and supplements containing probiotic microorganisms. Public Health Nutr 2(2):223–229

    PubMed  CAS  Google Scholar 

  • Harmsen HJM, Wildeboer-Veloo ACM, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediat Gastroenterol Nutr 30(1):61–67

    CAS  Google Scholar 

  • Harmsen HJM, Raangs GC, He T, Degener JE, Welling GW (2002) Extensive set of 16S rRNA-based probes for detection of bacteria in human faeces. Appl Environ Microbiol 68(6):2982–2990

    PubMed  CAS  Google Scholar 

  • Haskard CA, El Nezami HS, Kankaanpää PE, Salminen S, Ahokas JT (2001) Surface binding of aflatoxin B1 by lactic acid bacteria. Appl Environ Microbiol 67(7):3086–3091

    PubMed  CAS  Google Scholar 

  • Hawrelak JA, Myers SP (2004) The causes of intestinal dysbiosis: a review. Altern Med Rev 9(2):180–197

    PubMed  Google Scholar 

  • Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46(8):535–548

    PubMed  CAS  Google Scholar 

  • Hayashi H, Sakamoto M, Kitahara M, Benno Y (2003) Molecular analysis of faecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiol Immunol 47(8):557–570

    PubMed  CAS  Google Scholar 

  • He F, Ouwehand AC, Isolauri E, Hosoda M, Benno Y, Salminen S (2001) Differences in composition and mucosal adhesion of bifidobacteria isolated from healthy adults and healthy seniors. Curr Microbiol 43(5):351–354

    PubMed  CAS  Google Scholar 

  • Holdeman LV, Good IJ, Moore WE (1976) Human faecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl Environ Microbiol 31(3):359–375

    PubMed  CAS  Google Scholar 

  • Hopkins MJ, Macfarlane GT (2002) Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol 51(5):448–454

    PubMed  CAS  Google Scholar 

  • Hopkins MJ, Sharp R, Macfarlane GT (2001) Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48(2):198–205

    PubMed  CAS  Google Scholar 

  • Jacobsen CN, Rosenfeldt Nielsen V, Hayford AE, Moller PL, Michaelsen KF, Paerregaard A, Sandstrom B, Tvede M, Jakobsen M (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65(11):4949–4956

    PubMed  CAS  Google Scholar 

  • Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105(39):15064–15069

    PubMed  CAS  Google Scholar 

  • Juntunen M, Kirjavainen PV, Ouwehand AC, Salminen SJ, Isolauri E (2001) Adherence of probiotic bacteria to human intestinal mucus in healthy infants and during rotavirus infection. Clin Diagn Lab Immunol 8(2):293–296

    PubMed  CAS  Google Scholar 

  • Kaplan CW, Astaire JC, Sanders ME, Reddy BS, Kitts CL (2001) 16S ribosomal DNA terminal restriction fragment pattern analysis of bacterial communities in faeces of rats fed Lactobacillus acidophilus NCFM. Appl Environ Microbiol 67(4):1935–1939

    PubMed  CAS  Google Scholar 

  • Karmeli Y, Stalnikowitz R, Eliakim R, Rahav G (1995) Conventional dose of omeprazole alters gastric flora. Dig Dis Sci 40(9):2070–2073

    PubMed  CAS  Google Scholar 

  • Kelly G (2008) Inulin-type prebiotics—a review: Part I. Alt Med Rev 13(4):315–329

    Google Scholar 

  • Kirjavainen PV, El Nezami HS, Salminen SJ, Ahokas JT, Wright PF (1999) The effect of orally administered viable probiotic and dairy lactobacilli on mouse lymphocyte proliferation. FEMS Immunol Med Microbiol 26(2):131–135

    PubMed  CAS  Google Scholar 

  • Konstantinov SR, Smidt H, de Vos WM, Bruijns SC, Singh SK, Valence F, Molle D, Lortal S, Altermann E, Klaenhammer TR, van Kooyk Y (2008) S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A 105(49):19474–19479

    PubMed  CAS  Google Scholar 

  • Kontula P, Jaskari J, Nollet L, De Smet I, von Wright A, Poutanen K, Mattila-Sandholm T (1998) The colonization of a simulator of the human intestinal microbial ecosystem by a probiotic strain fed on a fermented oat bran product: effects on the gastrointestinal microbiota. Appl Microbiol Biotechnol 50(2):246–252

    PubMed  CAS  Google Scholar 

  • Kwak G-S, Kim S-K, Jun H-K (2001) Purification and characterization of bacteriocin J105 produced by Lactococcus lactis subsp. lactis J105 isolated from Kimchi. J Microbiol Biotechnol 11(2):275–280

    CAS  Google Scholar 

  • Lahtinen SJ, Ouwehand AC, Reinikainen JP, Korpela JM, Sandholm J, Salminen SJ (2006) Intrinsic properties of so-called dormant probiotic bacteria, determined by flow cytometric viability assays. Appl Environ Microbiol 72(7):5132–5134

    PubMed  CAS  Google Scholar 

  • Lahtinen SJ, Tammela L, Korpela J, Parhiala R, Ahokoski H, Mykkanen H, Salminen SJ (2009) Probiotics modulate the Bifidobacterium microbiota of elderly nursing home residents. Age (Dordr.) 31(1):59–66

    Google Scholar 

  • Laine R, Salminen S, Benno Y, Ouwehand AC (2003) Performance of bifidobacteria in oat-based media. Int J Food Microbiol 83(1):105–109

    PubMed  Google Scholar 

  • Laitinen K, Kalliomaki M, Poussa T, Lagstrom H, Isolauri E (2005) Evaluation of diet and growth in children with and without atopic eczema: follow-up study from birth to 4 years. Br J Nutr 94(4):565–574

    PubMed  CAS  Google Scholar 

  • Lay C, Rigottier-Gois L, Holmstrom K, Rajilic M, Vaughan EE, de Vos WM, Collins MD, Thiel R, Namsolleck P, Blaut M, Dore J (2005) Colonic microbiota signatures across five northern European countries. Appl Environ Microbiol 71(7):4153–4155

    PubMed  CAS  Google Scholar 

  • Layton A, McKay L, Williams D, Garrett V, Gentry R, Sayler G (2006) Development of Bacteroides 16S rRNA gene TaqMan-Based Real-Time PCR assays for estimation of total, human, and bovine faecal pollution in water. Appl Environ Microbiol 72(6):4214–4224

    PubMed  CAS  Google Scholar 

  • Lewis S, Burmeister S, Brazier J (2005a) Effect of the prebiotic oligofructose on relapse of Clostridium difficile-associated diarrhoea: a randomized, controlled study. Clin Gastroenterol Hepatol 3(5):442–448

    CAS  Google Scholar 

  • Lewis S, Burmeister S, Cohen S, Brazier J, Awasthi A (2005b) Failure of dietary oligofructose to prevent antibiotic-associated diarrhoea. Aliment Pharmacol Ther 21(4):469–477

    CAS  Google Scholar 

  • Leyer GJ, Li S, Mubasher ME, Reifer C, Ouwehand AC (2009) Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics 124(2):e172–e179

    PubMed  Google Scholar 

  • Ljungberg B, Nilsson-Ehle I, Edlund C, Nord CE (1990) Influence of ciprofloxacin on the colonic microflora in young and elderly volunteers: no impact of the altered drug absorption. Scand J Infect Dis 22(2):205–208

    PubMed  CAS  Google Scholar 

  • Lofmark S, Jernberg C, Jansson JK, Edlund C (2006) Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. J Antimicrob Chemother 58(6):1160–1167

    PubMed  Google Scholar 

  • Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69(5):1035S–1045S

    PubMed  CAS  Google Scholar 

  • Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, Doyle J, Jewell L, De Simone C (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121(3):580–591

    PubMed  CAS  Google Scholar 

  • Madueira AR, Giao MS, Pintado ME, Gomes AM, Freitas C, Malcata FX (2005) Incorporation and survival of probiotic bacteria in whey cheese matrices. J Food Sci 70(3):M160–M165

    Google Scholar 

  • Mäkeläinen H, Tahvonen R, Salminen S, Ouwehand AC (2003) In vivo safety assessment of two Bifidobacterium longum strains. Microbiol Immunol 47(12):911–914

    PubMed  Google Scholar 

  • Mäkeläinen H, Forssten S, Olli K, Granlund L, Rautonen N, Ouwehand AC (2009) Probiotic lactobacilli in a semi-soft cheese survive in the simulated human gastrointestinal tract. Int Dairy J 19:675–683

    Google Scholar 

  • Mäkeläinen HS, Mäkivuokko HA, Salminen SJ, Rautonen NE, Ouwehand AC (2007) The effects of polydextrose and xylitol on microbial community and activity in a 4-stage colon simulator. J Food Sci 72(5):M153–M159

    PubMed  Google Scholar 

  • Matto J, Maunuksela L, Kajander K, Palva A, Korpela R, Kassinen A, Saarela M (2005) Composition and temporal stability of gastrointestinal microbiota in irritable bowel syndrome—a longitudinal study in IBS and control subjects. FEMS Immunol Med Microbiol 43(2):213–222

    PubMed  Google Scholar 

  • McFarland LV (2006) Meta-analysis of probiotics for the prevention of antibiotic associated diarrhoea and the treatment of Clostridium difficile disease. Am J Gastroenterol 101(4):812–822

    PubMed  Google Scholar 

  • Meurman JH (2005) Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci 113(3):188–196

    PubMed  Google Scholar 

  • Mitsou EK, Kirtzalidou E, Oikonomou I, Liosis G, Kyriacou A (2008) Faecal microflora of Greek healthy neonates. Anaerobe 14(2):94–101

    PubMed  CAS  Google Scholar 

  • Mitsuoka T (1996) Intestinal flora and human health. Asia Pacific J Clin Nutr 5(1):2–9

    Google Scholar 

  • Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3(4):331–341

    PubMed  CAS  Google Scholar 

  • Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, Cresci A, Silvi S, Orpianesi C, Verdenelli MC, Clavel T, Koebnick C, Zunft HJ, Dore J, Blaut M (2006) Differences in faecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72(2):1027–1033

    PubMed  CAS  Google Scholar 

  • Nyberg SD, Osterblad M, Hakanen AJ, Lofmark S, Edlund C, Huovinen P, Jalava J (2007) Long-term antimicrobial resistance in Escherichia coli from human intestinal microbiota after administration of clindamycin. Scand J Infect Dis 39(6–7):514–520

    PubMed  CAS  Google Scholar 

  • Nybom SM, Salminen SJ, Meriluoto JA (2008) Specific strains of probiotic bacteria are efficient in removal of several different cyanobacterial toxins from solution. Toxicon 52(2):214–220

    PubMed  CAS  Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693

    PubMed  Google Scholar 

  • Orrhage K, Nord CE (1999) Factors controlling the bacterial colonization of the intestine in breastfed infants. Acta Paediatr 88:47–57

    CAS  Google Scholar 

  • Orrhage K, Sillerström E, Gustafsson JA, Nord CE, Rafter J (1994) Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat Res 311(2):239–248

    PubMed  CAS  Google Scholar 

  • Osman N, Adawi D, Ahrne S, Jeppsson B, Molin G (2005) Probiotic strains of Lactobacillus and Bifidobacterium affect the translocation and intestinal load of Enterobacteriaceae differently after D-galactosamine-induced liver injury in rats. Microb Ecol Health Dis 17(1):40–46

    CAS  Google Scholar 

  • Ouwehand AC, Lahtinen SJ (2008) The (non-) sense of human origin of probiotics. NutraCos 7:8–10

    Google Scholar 

  • Ouwehand AC, Salminen S (1998) The health effects of cultured milk products with viable and non-viable bacteria. Int Dairy J 8:749–758

    Google Scholar 

  • Ouwehand AC, Mäkeläinen H, Tiihonen K, Rautonen N (2006) Digestive health. In: Mitchell H (ed) Sweeteners and sugar alternatives in food technology, 1st edn. Blackwell Publishing, Oxford, pp 44–53

    Google Scholar 

  • Paineau D, Carcano D, Leyer G, Darquy S, Alyanakian MA, Simoneau G, Bergmann JF, Brassart D, Bornet F, Ouwehand AC (2008) Effects of seven potential probiotic strains on specific immune responses in healthy adults: a double-blind, randomized, controlled trial. FEMS Immunol Med Microbiol 53(1):107–113

    PubMed  CAS  Google Scholar 

  • Paliy O, Kenche H, Abernathy F, Michail S (2009) High-throughput quantitative analysis of the human intestinal microbiota with a phylogenetic microarray. Appl Environ Microbiol 75(11):3572–3579

    PubMed  CAS  Google Scholar 

  • Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5(7):e177

    Google Scholar 

  • Park HK, Shim SS, Kim SY, Park JH, Park SE, Kim HJ, Kang BC, Kim CM (2005) Molecular analysis of colonized bacteria in a human newborn infant gut. J Microbiol 43(4):345–353

    PubMed  CAS  Google Scholar 

  • Pavan S, Desreumaux P, Mercenier A (2003) Use of mouse models to evaluate the persistence, safety, and immune modulation capacities of lactic acid bacteria. Clin Diagn Lab Immunol 10(4):696–701

    PubMed  CAS  Google Scholar 

  • Petersen A, Heegaard PM, Pedersen AL, Andersen JB, Sorensen RB, Frokiaer H, Lahtinen SJ, Ouwehand AC, Poulsen M, Licht TR (2009) Some putative prebiotics increase the severity of Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiol 9:245

    PubMed  Google Scholar 

  • Playne MJ, Crittenden RG (2008) Galacto-oligosaccharides. Production, properties and applications in foods. NutraFoods 7(1):9–18

    CAS  Google Scholar 

  • Pool-Zobel BL, Neudecker C, Domizlaff I, Ji S, Schillinger U, Rumney C, Moretti M, Vilarini I, Scassellati-Sforzolini R, Rowland I (1996) Lactobacillus- and Bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutr Cancer 26(3):365–380

    PubMed  CAS  Google Scholar 

  • Reid G (2008) Probiotic Lactobacilli for urogenital health in women. J Clin Gastroenterol (42 Suppl, 3 Pt) 2:S234–S236

    Google Scholar 

  • Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, Dubuquoy C, Merour E, Geboes K, Chamaillard M, Ouwehand A, Leyer G, Carcano D, Colombel JF, Ardid D, Desreumaux P (2006) Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med 13(1):35–37

    PubMed  Google Scholar 

  • Saarela M, Maukonen J, von Wright A, Vilpponen-Salmela T, Patterson AJ, Scott KP, Hämynen H, Mätto J (2007) Tetracycline susceptibility of the ingested Lactobacillus acidophilus LaCH-5 and Bifidobacterium animalis subsp. lactis Bb-12 strains during antibiotic/probiotic intervention. Int J Antimicrob Agent 29(3):271–280

    CAS  Google Scholar 

  • Satokari RM, Vaughan EE, Favier CF, Doré J, Edwards C, Vos WM (2002) Diversity of Bifidobacterium and Lactobacillus spp. in breast-fed and formula-fed infants as assessed by 16S rDNA sequence differences. Microb Ecol Health Dis 14(2):97–105

    CAS  Google Scholar 

  • Savage DC (1977) Microbial ecology of the gastrointestinal tract. Ann Rev Microbiol 31(1):107–133

    CAS  Google Scholar 

  • Sazawal S, Hiremath G, Dhingra U, Malik P, Deb S, Black RE (2006) Efficacy of probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomised, placebo-controlled trials. Lancet Infect Dis 6(6):374–382

    PubMed  Google Scholar 

  • Scheppach W, Weiler F (2004) The butyrate story: old wine in new bottles. Curr Opin Clin Nutr Metabol Care 7:563–567

    Google Scholar 

  • Schiffrin EJ, Brassart D, Servin AL, Rochat F, Donnet-Hughes A (1997) Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am J Clin Nutr 66(2):515S–520S

    PubMed  CAS  Google Scholar 

  • Schwiertz A, Gruhl B, Lobnitz M, Michel P, Radke M, Blaut M (2003) Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants. Pediatr Res 54(3):393–399

    PubMed  Google Scholar 

  • Sepp E, Julge K, Vasar M, Naaber P, Bjorksten B, Mikelsaar M (1997) Intestinal microflora of Estonian and Swedish infants. Acta Paediatr 86(9):956–961

    PubMed  CAS  Google Scholar 

  • Shu Q, Qu F, Gill HS (2001) Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhoea associated with rotavirus and Escherichia coli infection in a piglet model. J Pediatr Gastroenterol Nutr 33(2):171–177

    PubMed  CAS  Google Scholar 

  • Stecher B, Hardt WD (2008) The role of microbiota in infectious disease. Trends Microbiol 16(3):107–114

    PubMed  CAS  Google Scholar 

  • Sullivan Å, Edlund C, Nord CE (2001) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1(2):101–114

    PubMed  Google Scholar 

  • Szajewska H, Mrukowicz JZ (2001) Probiotics in the treatment and prevention of acute infectious diarrhoea in infants and children: a systematic review of published randomized, double blind, placebo-controlled trials. J Pediatr Gastroenterol Nutr 33:S17–S25

    PubMed  CAS  Google Scholar 

  • Tahara T, Oshimura M, Umezawa C, Kanatani K (1996) Isolation, partial characterization, and mode of action of acidocin J1132, a two component bacteriocin produced by Lactobacillus acidophilus JCM 1132. Appl Environ Microbiol 62(3):892–897

    PubMed  CAS  Google Scholar 

  • Tannock GW, Munro K, Harmsen HJM, Welling GW, Smart J, Gopal PK (2000) Analysis of the faecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66(6):2578–2588

    PubMed  CAS  Google Scholar 

  • Tiihonen K, Tynkkynen S, Ouwehand A, Ahlroos T, Rautonen, N. (2008) The effect of ageing with and without non-steroidal anti-inflammatory drugs on gastrointestinal microbiology and immunology. Br J Nutr 100(1):130–137

    PubMed  CAS  Google Scholar 

  • Tiihonen K, Ouwehand AC, Rautonen N (2010) Human intestinal microbiota and healthy ageing. Ageing Res Rev 9(2):107–116

    PubMed  Google Scholar 

  • Tompkins TA, Hagen KE, Wallace TD, Fillion-Forte V (2008) Safety evaluation of two bacterial strains used in Asian probiotic products. Can J Microbiol 54(5):391–400

    PubMed  CAS  Google Scholar 

  • Tuohy KM, Kolida S, Lustenberger AM, Gibson GR (2001) The prebiotic effects of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides—a human volunteer study. Br J Nutr 86:341–348

    PubMed  CAS  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484

    PubMed  CAS  Google Scholar 

  • Valeur N, Engel P, Carbajal N, Connolly E, Ladefoged K (2004) Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract. Appl Environ Microbiol 70(2):1176–1181

    PubMed  CAS  Google Scholar 

  • van Tongeren SP, Slaets JPJ, Harmsen HJM, Welling GW (2005) Faecal microbiota composition and frailty. Appl Environ Microbiol 71(10):6438–6442

    PubMed  CAS  Google Scholar 

  • Vanhoutte T, Huys G, De Brandt E, Swings J (2004) Temporal stability analysis of the microbiota in human faeces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 48(3):437–446

    PubMed  CAS  Google Scholar 

  • Vankerckhoven V, Huys G, Vancanneyt M, Snauwaert C, Swings J, Klare I, Witte W, Van Autgaerden T, Chapelle S, Lammens C, Goossens H (2008) Genotypic diversity, antimicrobial resistance, and virulence factors of human isolates and probiotic cultures constituting two intraspecific groups of Enterococcus faecium isolates. Appl Environ Microbiol 74(14):4247–4255

    PubMed  CAS  Google Scholar 

  • Vesterlund S, Vankerckhoven V, Saxelin M, Goossens H, Salminen S, Ouwehand AC (2007) Safety assessment of Lactobacillus strains: presence of putative risk factors in faecal, blood and probiotic isolates. Int J Food Microbiol 116(3):325–331

    PubMed  CAS  Google Scholar 

  • Wagner RD, Warner T, Roberts L, Farmer J, Balish E (1997) Colonization of congenitally immunodeficient mice with probiotic bacteria. Infect Immun 65(8):3345–3351

    PubMed  CAS  Google Scholar 

  • Wagner RD, Pierson C, Warner T, Dohnalek M, Hilty M, Balish E (2000) Probiotic effects of feeding heat-killed Lactobacillus acidophilus and Lactobacillus casei to Candida albicans-colonized immunodeficient mice. J Food Protect 63(5):638–644

    CAS  Google Scholar 

  • Wolf BW, Garleb KA, Ataya DG, Casas IA (1995) Safety and tolerance of Lactobacillus reuteri in healthy adult male subjects. Microb Ecol Health Dis 8(2):41–50

    Google Scholar 

  • Wong C, Ustunol Z (2006) Mode of inactivation of probiotic bacteria affects interleukin 6 and interleukin 8 production in human intestinal epithelial-like Caco-2 cells. J Food Protect 69(9):2285–2288

    CAS  Google Scholar 

  • Woodmansey EJ, McMurdo MET, Macfarlane GT, Macfarlane S (2004) Comparison of compositions and metabolic activities of faecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol 70(10):6113–6122

    PubMed  CAS  Google Scholar 

  • Yildirim Z, Johnson MG (1998) Characterization and antimicrobial spectrum of bifidocin B, a bacteriocin produced by Bifidobacterium bifidum NCFB 1454. J Food Protect 61(1):47–51

    CAS  Google Scholar 

  • Zhou JS, Shu Q, Rutherfurd KJ, Prasad J, Gopal PK, Gill HS (2000) Acute oral toxicity and bacterial translocation studies on potentially probiotic strains of lactic acid bacteria. Food Chem Toxicol 38(2–3):153–161

    PubMed  CAS  Google Scholar 

  • Zoetendal EG, Akkermans AD, de Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human faecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64(10):3854–3859

    PubMed  CAS  Google Scholar 

  • Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR (2004) Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134(2):465–472

    PubMed  CAS  Google Scholar 

  • Zoetendal EG, Rajilic-Stojanovic M, de Vos WM (2008) High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57(11):1605–1615

    PubMed  CAS  Google Scholar 

  • Zou J, Dong J, Yu X (2009) Meta-analysis: Lactobacillus containing quadruple therapy versus standard triple first-line therapy for Helicobacter pylori eradication. Helicobacter 14(5):97–107

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia D. Forssten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Forssten, S.D., Lahtinen, S.J., Ouwehand, A.C. (2011). The Intestinal Microbiota and Probiotics. In: Malago, J., Koninkx, J., Marinsek-Logar, R. (eds) Probiotic Bacteria and Enteric Infections. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0386-5_2

Download citation

Publish with us

Policies and ethics