Skip to main content

Atmospheric Science of Air Pollution Phenomena—Current Directions Toward Exposure Characterization

  • Chapter
  • First Online:
Technical Challenges of Multipollutant Air Quality Management
  • 896 Accesses

Abstract

Any approach to multipollutant air quality management must consider the chemical transformation and fate of the relevant pollutant species that affect human health and welfare. Estimating exposure for a broader mix of pollutants (e.g. oxidants, hazardous air pollutants, or the chemical composition and size distribution of PM) requires improved understanding of the complex chemistry and physicochemical transformations of these compounds, their relevant precursors, and their lifetimes in time and space. This chapter provides insights into those processes most likely to affect this broad and complex mix of pollutants in terms of their distribution on the urban/regional and the local scale (i.e. 10’s–100’s of meters from a source). It is not the intent of this chapter to provide comprehensive review of the chemistry of the atmosphere (these can be found elsewhere), but to provide an overview of the atmospheric processes important to a multipollutant approach to air quality management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., & Troe, J. (2004). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox, HOx, NOx and SOx species. Atmospheric Chemistry and Physics, 4, 1461–1738.

    Article  CAS  Google Scholar 

  • Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., & Troe, J. (2007). Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III—gas phase reactions of inorganic halogens. Atmospheric Chemistry and Physics, 7, 981–1191.

    Article  CAS  Google Scholar 

  • Barket, D. J., Grossenbacher, J. W., Hurst, J. M., Shepson, P. B., Olszyna, K., Thornberry, T., Carroll, M. A., Roberts, J., Stroud, C., Bottenheim, J., & Biesenthal, T. (2004). A study of the NOx dependence of isoprene oxidation. Journal of Geophysical Research, 109, D11310. doi:10.1029/2003JD003965.

    Article  Google Scholar 

  • Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber, R. J., Dube, W. P., Trainer, M., Meagher, J. F., Fehsenfeld, F. C., & Ravishankara, A. R. (2006). Variability in nocturnal nitrogen oxide processing and its role in regional air quality. Science, 311, 67–70.

    Article  CAS  Google Scholar 

  • Cai, C., Hogrefe, C., Schwab, J. J., Katsafados, P., Kallos, G., Ren, X., Brune, W. H., Zhou, X., He, Y., & Demerjian, K. L. (2008). Performance evaluation of an air quality forecast modeling system for a summer and winter season—photochemical oxidants and their precursors. Atmospheric Environment, 42, 8585–8599.

    Article  CAS  Google Scholar 

  • Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae, M. O., Artaxo, P., & Maenhaut, W. (2004). Formation of secondary organic aerosols through photooxidation of isoprene. Science, 303, 1173–1176.

    Article  CAS  Google Scholar 

  • Demerjian, K. L., & Mohnen, V. A. (2008). Synopsis of the temporal variation of particulate matter composition and size. Journal of the Air and Waste Management Association, 58, 216–233.

    Article  CAS  Google Scholar 

  • Derwent, R. G., Jenkin, M. E., Passant, N. R., & Pilling, M. J. (2007). Photochemical ozone creation potentials (POCP) for different emission sources of organic compounds under European conditions estimated with a master chemical mechanism. Atmospheric Environment, 41, 2570–2579.

    Article  CAS  Google Scholar 

  • Dodge, M. C. (1977). Combined use of modeling techniques and smog chamber data to derive ozone-precursor relationships. Proceedings, International Conference on Photochemical Oxidant Pollution and its Control, Vol. II, B. Dimitriades, ed. EPA/6003-77-001a (pp. 871–879). Research Triangle Park: PB 264232 Environmental Sciences Research Laboratory, U.S. Environmental Protection Agency.

    Google Scholar 

  • Dodge, M. C. (2000). Chemical oxidant mechanisms for air quality modeling: Critical review. Atmospheric Environment, 34, 2103–2130.

    Article  CAS  Google Scholar 

  • Dommen, J., Metzger, A., Duplissy, J., Kalberer, M., Alfarra, M. R., Gascho, A., Weingartner, E., Prevot, A. S. H., Verheggen, B., & Baltensperger, U. (2006). Laboratory observation of oligomers in the aerosol from isoprene/NOx photooxidation. Geophysical Research Letters, 33, L13805. doi:10.1029/2006GL026523.

    Article  Google Scholar 

  • ENVIRON. (2002). CRC Project Final Report A-42-2. Development, application, and evaluation of an advanced photochemical air toxics modeling system. Coordinating Research Council, Inc. Alpharetta, Georgia, September 27, 2002.

    Google Scholar 

  • EPA. (2006). Air quality criteria for ozone and related photochemical oxidants volume I and II, EPA 600/R-05/004aF, February 2006.

    Google Scholar 

  • Fine, P. M., Shen, S., & Sioutas, C. (2004). Inferring the sources of fine and ultrafine particulate matter at downwind receptor sites in the Los Angeles Basin using multiple continuous measurements. Aerosol Science and Technology, 38(S1), 182–195.

    Article  CAS  Google Scholar 

  • Gery, M. W., Whitten, G. Z., Killus, J. P., & Dodge, M. C. (1989). A photochemical mechanism for urban and regional scale computer modeling. Journal of Geophysical Research, 94, 12925–12956.

    Article  CAS  Google Scholar 

  • Griffin, R. J., Dabdub, D., & Seinfeld, J. H. (2002). Secondary organic aerosol: I. atmospheric chemical mechanism for the production of molecular constituents. Journal of Geophysical Research, 107, 4332. doi:10.1029/2001JD000541.

    Article  Google Scholar 

  • Harley, R. A., & Cass, G. R. (1994). Modeling the concentrations of gas-phase toxic organic air pollutants: Direct emissions and atmospheric formation. Environmental Science and Technology, 28(1), 88–98.

    Article  CAS  Google Scholar 

  • Hayden, K. L., Anlauf, K. G., Hastie, D. R., & Bottenheim, J. W. (2003). Partitioning of reactive atmospheric nitrogen oxides at an elevated site in southern Quebec, Canada. Journal of Geophysical Research, 108(D19), 4603. doi:10.1029/2002JD003188.

    Article  Google Scholar 

  • Hogrefe, C., Lynn, B., Goldberg, R., Rosenzweig, C., Zalewsky, E., Hao, W., Doraiswamy, P., Civerolo, K., Ku, J. Y., Sistla, G., & Kinney, P. L. (2009). A combined model-observation approach to estimate historic gridded fields of PM2.5 mass and species concentrations. Atmospheric Environment, 43, 2561–2570.

    Article  CAS  Google Scholar 

  • Jacob, D. J. (2000). Heterogeneous chemistry and tropospheric ozone. Atmospheric Environment, 34, 2131–2159.

    Article  CAS  Google Scholar 

  • Jenkin, M. E., Saunders, S. M., & Pilling, M. J. (1997). The tropospheric degradation of volatile organic compounds: A protocol for mechanism development. Atmospheric Environment, 31, 81–104.

    Article  CAS  Google Scholar 

  • Koutrakis, P., Wolfson, J. M., & Spengler, J. D. (1988). An improved method for measuring aerosol strong acidity: Results from a nine-month study in St. Louis, Missouri and Kingston, Tennessee. Atmospheric Environment, 22(1), 157–162.

    Article  CAS  Google Scholar 

  • Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., & Seinfeld, J. H. (2005). Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions. Geophysical Research Letters, 32, L18808. doi:10.1029/2005GL023637.

    Article  Google Scholar 

  • Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., & Seinfeld, J. H. (2006). Secondary organic aerosol formation from isoprene photooxidation. Environmental Science and Technology, 40, 1869–1877.

    Article  CAS  Google Scholar 

  • Lane, T., & Pandis, S. N. (2007). Predicted secondary organic aerosol concentrations from the oxidation of isoprene in the eastern United States. Environmental Science and Technology, 41, 3984–3990.

    Article  CAS  Google Scholar 

  • Li, S.-M. (2004). A concerted effort to understand the ambient particulate matter in the Lower Fraser Valley: The Pacific 2001 Air Quality Study. Atmospheric Environment, 38, 5719–5731.

    Article  CAS  Google Scholar 

  • Ligocki, M. P., Whitten, G. Z., Schulhof, R. R., Causley, M. C., & Smylie, G. M. (1991). Atmospheric transformations of air toxics: Benzene, 1,3-butadiene, and formaldehyde. San Rafael: Systems Applications International (SYSAPP-91/106).

    Google Scholar 

  • Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Pirrone, N., Prestbo, E., & Seigneur, C. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio, 36(1), 19–32.

    Article  Google Scholar 

  • Liu, C. J. S., Burton, R., Wilson, W. E., & Koutrakis, P. (1996). Comparison of aerosol acidity in urban and semi-rural environments. Atmospheric Environment, 30, 1237–1245.

    Article  CAS  Google Scholar 

  • Madronich, S., & Calvert, J. G. (1990). Permutation reactions of organic peroxy radicals in the troposphere. Journal of Geophysical Research, 95, 5697–5715.

    Article  CAS  Google Scholar 

  • McLaren, R., Salmon, R. A., Liggio, J., Haydne, K. L., Anlauf, K. G., & Leaitch, W. R. (2004). Nighttime chemistry at a rural site in the Lower Fraser Valley. Atmospheric Environment, 38, 5837–5848.

    Article  CAS  Google Scholar 

  • McMurry, P., Shepherd, M., & Vickery, J. (Eds.). (2004). Particulate matter science for policy makers: A NARSTO assessment. Cambridge: Cambridge University Press.

    Google Scholar 

  • Molina, L. T, Kolb, C. E., de Foy, B., Lamb, B. K., Brune, W. H., Jimenez, J. L., Ramos-Villegas, R., Sarmiento, J., Paramo-Figueroa, V. H., Cardenas, B., Gutierrez-Avedoy, V., & Molina, M. J. (2007). Air quality in North America’s most populous city—overview of the MCMA-2003 campaign. Atmospheric Chemistry and Physics, 7, 2447–2473.

    Article  CAS  Google Scholar 

  • Molina, L. T., Madronich, S., Gaffney, J. S., Apel, E., de Foy, B., Fast, J., Ferrare, R., Herndon, S., Jimenez, J. L., Lamb, B., Osornio-Vargas, A. R., Russell, P., Schauer, J. J., Stevens, P. S., & Zavala, M. (2010). An overview of the MILAGRO 2006 campaign: Mexico City emissions and their transport and transformation. Atmospheric Chemistry and Physics Discussions, 10, 7819–7983.

    Article  Google Scholar 

  • NARSTO. (2000). An assessment of tropospheric ozone pollution. NARSTO, Kennewick, WA; Report 1000040, EPRI, Palo Alto, CA.

    Google Scholar 

  • National Research Council (NRC). (1991). Rethinking the ozone problem in urban and regional air pollution. Washington: National Academies Press.

    Google Scholar 

  • National Research Council (NRC). (1998). Research priorities for airborne particulate matter: I. immediate priorities and a long-range research portfolio. Washington: National Academies Press.

    Google Scholar 

  • National Research Council (NRC). (2004a). Research priorities for airborne particulate matter: IV. continuing research progress. Washington: National Academies Press.

    Google Scholar 

  • National Research Council (NRC). (2004b). Air quality management in the United States. Washington: National Academies Press.

    Google Scholar 

  • Nenes, A., Pilinis, C., & Pandis, S. N. 1999. Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models. Atmospheric Environment, 33, 1553–1560.

    Article  CAS  Google Scholar 

  • Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., & Seinfeld, J. H. (1996). Gas particle partioning and secondary organic aerosol yields. Environmental Science and Technology, 30, 2580–2585.

    Article  CAS  Google Scholar 

  • Palmer, P. I., Abbot, D. S., Fu, T. M., Jacob, D. J., Chance, K., Kurosu, T. P., Guenther, A., et al. (2006). Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column. Journal of Geophysical Research D: Atmospheres 111(12), D12315.

    Article  Google Scholar 

  • Presto, A. A., Hartz, K. E. H., & Donahue, N. M. (2005). Secondary organic aerosol production from terpene ozonolysis. 2. Effect of NOx concentration. Environmental Science and Technology, 39, 7046–7054.

    Article  CAS  Google Scholar 

  • Ren, X., Harder, H., Martinez, M., Lesher, R. L.,Oliger, A., Simpas, J. B., Brune, W. H., Schwab, J. J., Demerjian, K. L., He, Y., Zhou, X., & Gao, H. (2003). OH and HO2 chemistry in the urban atmosphere of New York City. Atmospheric Environment, 37, 3639–3651.

    Article  CAS  Google Scholar 

  • Ren, X., Brune, W. H., Mitchell, M. J., Lesher, R. L., Metcalf, A. R., Simpas, J. B., Schwab, J. J., Demerjian, K. L., Felton, H. D., Boynton, G., He, Y., Zhou, X., & Hou, J. (2006). Behavior of OH and HO2 in the winter atmosphere in New York City. Atmospheric Environment, 40, S252–S263

    Article  CAS  Google Scholar 

  • Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., & Pandis, S. N. (2007). Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science, 315(5816), 1259–1262.

    Article  Google Scholar 

  • Rosenbaum, A. S., Ligocki, M. P., & Wei, Y. H. (1999). Modeling cumulative outdoor concentrations of hazardous air pollutants—Volume I: Text (p. 129). San Rafael: Systems Applications International (SYSAPP-99-96/33r2).

    Google Scholar 

  • Sander, S. P., Finlayson-Pitts, B. J., Friedl, R. R., Golden, D. M., Huie, R. E., Keller-Rudek, H., Kolb, C. E., Kurylo, M. J., Molina, M. J., Moortgat, G. K., Orkin, V. L., Ravishankara, A. R., & Wine, P. H. (2007). Chemical kinetics and photochemical data for use in atmospheric studies, evaluation number 15, JPL Publication 06-2 (p. 523). Pasadena: Jet Propulsion Laboratory.

    Google Scholar 

  • Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1996). Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment, 30, 3837–3855.

    Article  CAS  Google Scholar 

  • Schwab, J. J., Felton, H. D., & Demerjian, K. L. (2004). Aerosol chemical composition in New York state from integrated filter samples: Urban/rural and seasonal contrasts. Journal of Geophysical Research, 109, D16S05. doi:10.1029/2003JD004078.

    Article  Google Scholar 

  • Seigneur, C., Pun, B., Lohman, K., & Wu, S. Y. (2002). Air toxics modeling, CRC project number A-42-1, NREL contract number KCI-8-17085-05 (p. 199). Alpharetta: Coordinating Research Council (Document Number CP079-02-3).

    Google Scholar 

  • Shirley, T. R., Brune, W. H., Ren, X., Mao, J., Lesher, R., Cardenas, B., Volkamer, R., Molina, L. T., Molina, M. J., Lamb, B., Velasco, E., Jobson, T., & Alexander, M. (2006). Atmospheric oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003. Atmospheric Chemistry and Physics, 6, 2753–2765.

    Article  CAS  Google Scholar 

  • Solomon, P., & Hopke, P. (2008). Introduction: A special issue of JA&WMA supporting key scientific and policy- and health-relevant findings from EPA’s particulate matter supersites program and related studies: An integration and synthesis of results. Journal of the Air and Waste Management Association, 58, 137–139.

    Article  Google Scholar 

  • Solomon, P., Cowling, E., Hidy, G., & Furiness, C. (2000). Comparison of scientific findings from major ozone field studies in North America and Europe. Atmospheric Environment, 34, 1885–1920.

    Article  CAS  Google Scholar 

  • Stanier, C. O., Khlystov, A. Y., & Pandis, S. N. (2004). Nucleation events during the Pittsburgh air quality study: Description and relation to key meteorological, gas phase, and aerosol parameters. Aerosol Science and Technology, 38(S1), 253–264.

    Article  CAS  Google Scholar 

  • Stockwell, W. R., Kirchner, F., & Kuhn, M. (1997). A new mechanism for regional atmospheric chemistry. Journal of Geophysical Research, 102, 25847–25879.

    Article  CAS  Google Scholar 

  • Thannickal, V. J., & Fanburg, B. L. (2000). Reactive oxygen species in cell signaling. American Journal of Physiology – Lung Cellular and Molecular Physiology, 279, L1005–L1028.

    CAS  Google Scholar 

  • Trainer, M., Hsie, E. Y., McKeen, S. A., Tallamraju, R., Parrish, D. D., Fehsenfeld, F. C., & Liu, S. C. (1987). Impact of natural hydrocarbons on hydroxyl and peroxy radicals at a remote site. Journal of Geophysical Research, 92, 11879–11894.

    Article  CAS  Google Scholar 

  • Trainer, M., et al. (1993). Correlation of ozone with NOy in photochemically aged air. Journal of Geophysical Research, 98, 2917–2925.

    Article  CAS  Google Scholar 

  • Vingarzan, R., Li, S.-M., & Thomson, B. (2006). The Pacific 2001 air quality study—synthesis of findings and policy implications. Atmospheric Environment, 40, 2637–2649.

    Article  CAS  Google Scholar 

  • Volkamer, R., Sheehy, P. M., Molina, L. T., & Molina, M. J. (2007). Oxidative capacity of the Mexico City atmosphere—Part 1: A radical source perspective. Atmospheric Chemistry and Physics Discussions, 7, 5365–5412.

    Article  Google Scholar 

  • Warneck, P. (1988). Chemistry of the natural atmosphere. International Geophysics Series Vol. 41. New York: Academic.

    Google Scholar 

  • Warneke, C., de Gouw, J. A., Goldan, P. D., Kuster, W. C., Williams, E. J., Lerner, B. M., Jakoubek, R., Brown, S. S., Stark, H., Aldener, M., Ravishankara, A. R., Roberts, J. M., Marchewka, M., Bertman, S., Sueper, D. T., McKeen, S. A., Meagher, J. F., & Fehsenfeld, F. C. (2004). Comparison of daytime and nighttime oxidation of biogenic and anthropogenic VOCs along the New England coast in summer during New England Air Quality Study 2002. Journal of Geophysical Research, 109, D10309. doi:10.1029/2003JD004424.

    Article  Google Scholar 

  • Yarwood, G., Rao, S., Yocke, M., & Whitten, G. (2005). Updates to the carbon bond chemical mechanism: CB05. Final report to the U.S. EPA, RT-0400675. http://www.camx.com.

    Google Scholar 

  • Zhang, Q., Worsnop, D., Canagaratna, M., & Jimenez, J. (2005a). Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: Insights into sources and processes or organic aerosols. Atmospheric Chemistry and Physics, 5, 3289–3311.

    Article  CAS  Google Scholar 

  • Zhang, Q., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., & Jimenez, J.-L. (2005b). Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes. Journal of Geophysical Research, 110, D07S09. doi:10.1029/2004JD004649.

    Article  Google Scholar 

  • Zhu, Y., Hinds, W., Kim, S., & Sioutas, C. (2002). Concentrations and size distribution of ultrafine particles near a major highway. Journal of the Air and Waste Management Association, 36, 1032–1042.

    Article  Google Scholar 

  • Zhu, Y., Hinds, W. C., Shen, S., & Sioutas, C. (2004). Seasonal trends of concentration and size distribution of ultrafine particles near major highways in Los Angeles. Aerosol Science and Technology, 38(S1), 5–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the following contributing authors: Jeffrey R. Brook, George M. Hidy, Luisa T. Molina, Richard D. Scheffe, Wenfang Lei.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth L. Demerjian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Demerjian, K.L. (2011). Atmospheric Science of Air Pollution Phenomena—Current Directions Toward Exposure Characterization. In: Hidy, G., Brook, J., Demerjian, K., Molina, L., Pennell, W., Scheffe, R. (eds) Technical Challenges of Multipollutant Air Quality Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0304-9_7

Download citation

Publish with us

Policies and ethics