Skip to main content

Breast Cancer Liver Metastasis

  • Chapter
  • First Online:
Liver Metastasis: Biology and Clinical Management

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 16))

Abstract

The emergence of metastatic breast cancer is the most deadly aspect of this disease and once it has spread from the primary site, it is largely incurable. Upon dissemination from the primary tumor, breast cancer cells display preferences for specific metastatic sites. The liver represents the third most frequent site for breast cancer metastasis, following the bone and lung. Despite the evidence that hepatic metastases are associated with poor clinical outcome in breast cancer patients, little is known about the molecular mechanisms governing the spread and growth of breast cancer cells in the liver. In recent years, researchers have utilized animal model systems to isolate breast cancer cells that weakly or aggressively metastasize to the liver and have utilized gene expression profiling to compare these populations. In this manner, genes whose expression is elevated or diminished in highly metastatic breast cancer cells have been identified. We highlight both tumor intrinsic factors as well as aspects of the metastatic microenvironment that contribute to the establishment and growth of breast cancer liver metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASC:

adipocyte stem cell

BCLivM::

breast cancer liver metastasis

BMDC::

bone marrow derived cell

BMSC::

bone marrow stem cell

CRC:

colorectal cancer

DCIS:

ductal carcinoma in situ

DOX :

doxycycline

ECM:

extracellular matrix

ER:

estrogen receptor

HPC:

haematopoietic progenitor cell

IDC:

invasive ductal carcinoma

ILC:

invasive lobular carcinoma

LCIS:

lobular carcinoma in situ

MMP:

matrix metalloproteinase

MSC:

mesenchymal stem cell

PR:

progesterone receptor

SAGE:

serial analysis of gene expression

SDPP:

stroma-derived prognostic predictor

SIRT:

selective internal radiotherapy

TACE:

transcatheter arterial chemoembolization

TEM:

tetraspanin-enriched membrane microdomains

TMN:

tumor-node-metastasis system

References

  1. CCS (2009) Canadian Cancer Statistics 2009. Toronto, Canada, pp 1–124.

    Google Scholar 

  2. Edlich RF, Cross CL, Wack CA, Chase ME, Lin KY, Long WB 3rd (2008) Breast cancer and ovarian cancer genetics: an update. J Environ Pathol Toxicol Oncol 27:245–256

    PubMed  CAS  Google Scholar 

  3. Singletary SE and Connolly JL (2006) Breast cancer staging: working with the sixth edition of the AJCC Cancer Staging Manual. CA Cancer J Clin 56:37–47; quiz 50–31

    PubMed  Google Scholar 

  4. Ugnat AM, Xie L, Morriss J, Semenciw R, Mao Y (2004) Survival of women with breast cancer in Ottawa, Canada: variation with age, stage, histology, grade and treatment. Br J Cancer 90:1138–1143

    PubMed  CAS  Google Scholar 

  5. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    PubMed  CAS  Google Scholar 

  6. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    PubMed  CAS  Google Scholar 

  7. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    PubMed  CAS  Google Scholar 

  8. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100:10393–10398

    PubMed  CAS  Google Scholar 

  9. Sims AH, Howell A, Howell SJ, Clarke RB (2007) Origins of breast cancer subtypes and therapeutic implications. Nat Clin Pract Oncol 4:516–525

    PubMed  CAS  Google Scholar 

  10. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167

    PubMed  Google Scholar 

  11. Foulkes WD, Brunet JS, Stefansson IM, Straume O, Chappuis PO, Begin LR, Hamel N, Goffin JR, Wong N, Trudel M, Kapusta L, Porter P, Akslen LA (2004) The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res 64:830–835

    PubMed  CAS  Google Scholar 

  12. Haffty BG, Yang Q, Reiss M, Kearney T, Higgins SA, Weidhaas J, Harris L, Hait W, Toppmeyer D (2006) Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 24:5652–5657

    PubMed  Google Scholar 

  13. Kurebayashi J (2009) Possible treatment strategies for triple-negative breast cancer on the basis of molecular characteristics. Breast Cancer 16:275–280

    Google Scholar 

  14. Rodriguez-Pinilla SM, Sarrio D, Honrado E, Hardisson D, Calero F, Benitez J, Palacios J (2006) Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res 12:1533–1539

    PubMed  CAS  Google Scholar 

  15. Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG, Foekens JA, Martens JW (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68:3108–3114

    PubMed  CAS  Google Scholar 

  16. Hu M, Polyak K (2008) Molecular characterisation of the tumour microenvironment in breast cancer. Eur J Cancer 44:2760–2765

    PubMed  CAS  Google Scholar 

  17. Kleer CG, Bloushtain-Qimron N, Chen YH, Carrasco D, Hu M, Yao J, Kraeft SK, Collins LC, Sabel MS, Argani P, Gelman R, Schnitt SJ, Krop IE, Polyak K (2008) Epithelial and stromal cathepsin K and CXCL14 expression in breast tumor progression. Clin Cancer Res 14:5357–5367

    PubMed  CAS  Google Scholar 

  18. Kim JB, Stein R, O’Hare MJ (2005) Tumour-stromal interactions in breast cancer: the role of stroma in tumourigenesis. Tumour Biol 26:173–185

    PubMed  Google Scholar 

  19. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6:17–32

    PubMed  CAS  Google Scholar 

  20. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527

    PubMed  CAS  Google Scholar 

  21. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    PubMed  Google Scholar 

  22. Cardoso F, Van’t Veer L, Rutgers E, Loi S, Mook S, Piccart-Gebhart MJ (2008) Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 26:729–735

    PubMed  Google Scholar 

  23. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826

    PubMed  CAS  Google Scholar 

  24. Sparano JA, Paik S (2008) Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol 26:721–728

    PubMed  Google Scholar 

  25. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, Andre S, Piccart M, Campone M, Brain E, Macgrogan G, Petit T, Jassem J, Bibeau F, Blot E, Bogaerts J, Aguet M, Bergh J, Iggo R, Delorenzi M (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15:68–74

    PubMed  CAS  Google Scholar 

  26. Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, Delorenzi M, Piccart M, Sotiriou C (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14:5158–5165

    PubMed  CAS  Google Scholar 

  27. Er O, Frye DK, Kau SW, Broglio K, Valero V, Hortobagyi GN, Arun B (2008) Clinical course of breast cancer patients with metastases limited to the liver treated with chemotherapy. Cancer J 14:62–68

    PubMed  Google Scholar 

  28. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    PubMed  CAS  Google Scholar 

  29. Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R, Abbruzzese JL (2006) Metastatic patterns in adenocarcinoma. Cancer 106:1624–1633

    PubMed  Google Scholar 

  30. Rabbani SA, Mazar AP (2007) Evaluating distant metastases in breast cancer: from biology to outcomes. Cancer Metastasis Rev 26:663–674

    PubMed  Google Scholar 

  31. Paget S (1889) Distribution of secondary growths in cancer of the breast. Lancet 1:571–573

    Google Scholar 

  32. Paterson AH, Powles TJ, Kanis JA, McCloskey E, Hanson J, Ashley S (1993) Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol 11:59–65

    PubMed  CAS  Google Scholar 

  33. Plunkett TA, Smith P, Rubens RD (2000) Risk of complications from bone metastases in breast cancer. implications for management. Eur J Cancer 36:476–482

    PubMed  CAS  Google Scholar 

  34. Nielsen OS, Munro AJ, Tannock IF (1991) Bone metastases: pathophysiology and management policy. J Clin Oncol 9:509–524

    PubMed  CAS  Google Scholar 

  35. Elder EE, Kennedy CW, Gluch L, Carmalt HL, Janu NC, Joseph MG, Donellan MJ, Molland JG, Gillett DJ (2006) Patterns of breast cancer relapse. Eur J Surg Oncol 32:922–927

    PubMed  CAS  Google Scholar 

  36. Lu X, Kang Y (2007) Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia 12:153–162

    PubMed  Google Scholar 

  37. Clark GM, Sledge GW Jr, Osborne CK, McGuire WL (1987) Survival from first recurrence: relative importance of prognostic factors in 1,015 breast cancer patients. J Clin Oncol 5:55–61

    PubMed  CAS  Google Scholar 

  38. Insa A, Lluch A, Prosper F, Marugan I, Martinez-Agullo A, Garcia-Conde J (1999) Prognostic factors predicting survival from first recurrence in patients with metastatic breast cancer: analysis of 439 patients. Breast Cancer Res Treat 56:67–78

    PubMed  CAS  Google Scholar 

  39. Pentheroudakis G, Fountzilas G, Bafaloukos D, Koutsoukou V, Pectasides D, Skarlos D, Samantas E, Kalofonos HP, Gogas H, Pavlidis N (2005) Metastatic breast cancer with liver metastases: a registry analysis of clinicopathologic, management and outcome characteristics of 500 women. Breast Cancer Res Treat 97:237–244

    PubMed  Google Scholar 

  40. Eichbaum MH, Kaltwasser M, Bruckner T, de Rossi TM, Schneeweiss A, Sohn C (2006) Prognostic factors for patients with liver metastases from breast cancer. Breast Cancer Res Treat 96:53–62

    PubMed  Google Scholar 

  41. Selzner M, Morse MA, Vredenburgh JJ, Meyers WC, Clavien PA (2000) Liver metastases from breast cancer: long-term survival after curative resection. Surgery 127:383–389

    PubMed  CAS  Google Scholar 

  42. Samaan NA, Buzdar AU, Aldinger KA, Schultz PN, Yang KP, Romsdahl MM, Martin R (1981) Estrogen receptor: a prognostic factor in breast cancer. Cancer 47:554–560

    PubMed  CAS  Google Scholar 

  43. Arai Y, Sone Y, Inaba Y, Ariyoshi Y, Kido C (1994) Hepatic arterial infusion chemotherapy for liver metastases from breast cancer. Cancer Chemother Pharmacol 33:S142–144

    PubMed  Google Scholar 

  44. Caralt M, Bilbao I, Cortes J, Escartin A, Lazaro JL, Dopazo C, Olsina JJ, Balsells J, Charco R (2008) Hepatic resection for liver metastases as part of the “oncosurgical” treatment of metastatic breast cancer. Ann Surg Oncol 15:2804–2810

    PubMed  Google Scholar 

  45. Li XP, Meng ZQ, Guo WJ, Li J (2005) Treatment for liver metastases from breast cancer: results and prognostic factors. World J Gastroenterol 11:3782–3787

    PubMed  Google Scholar 

  46. Lubrano J, Roman H, Tarrab S, Resch B, Marpeau L, Scotte M (2008) Liver resection for breast cancer metastasis: does it improve survival? Surg Today 38:293–299

    PubMed  Google Scholar 

  47. Ercolani G, Grazi GL, Ravaioli M, Ramacciato G, Cescon M, Varotti G, Del Gaudio M, Vetrone G, Pinna AD (2005) The role of liver resections for noncolorectal, nonneuroendocrine metastases: experience with 142 observed cases. Ann Surg Oncol 12:459–466

    PubMed  Google Scholar 

  48. Adam R, Aloia T, Krissat J, Bralet MP, Paule B, Giacchetti S, Delvart V, Azoulay D, Bismuth H, Castaing D (2006) Is liver resection justified for patients with hepatic metastases from breast cancer? Ann Surg 244:897–907; discussion 907–898

    PubMed  Google Scholar 

  49. Thelen A, Benckert C, Jonas S, Lopez-Hanninen E, Sehouli J, Neumann U, Rudolph B, Neuhaus P (2008) Liver resection for metastases from breast cancer. J Surg Oncol 97:25–29

    PubMed  Google Scholar 

  50. Sakamoto Y, Yamamoto J, Yoshimoto M, Kasumi F, Kosuge T, Kokudo N, Makuuchi M (2005) Hepatic resection for metastatic breast cancer: prognostic analysis of 34 patients. World J Surg 29:524–527

    PubMed  Google Scholar 

  51. Diamond JR, Finlayson CA, Borges VF (2009) Hepatic complications of breast cancer. Lancet Oncol 10:615–621

    PubMed  Google Scholar 

  52. Jakobs TF, Hoffmann RT, Schrader A, Stemmler HJ, Trumm C, Lubienski A, Murthy R, Helmberger TK, Reiser MF (2009) CT-guided radiofrequency ablation in patients with hepatic metastases from breast cancer. Cardiovasc Intervent Radiol 32:38–46

    PubMed  Google Scholar 

  53. Umeda T, Abe H, Kurumi Y, Naka S, Shiomi H, Hanasawa K, Morikawa S, Tani T (2005) Magnetic resonance-guided percutaneous microwave coagulation therapy for liver metastases of breast cancer in a case. Breast Cancer 12:317–321

    PubMed  Google Scholar 

  54. Milano MT, Philip A, Okunieff P (2009) Analysis of patients with oligometastases undergoing two or more curative-intent stereotactic radiotherapy courses. Int J Radiat Oncol Biol Phys 73:832–837

    PubMed  Google Scholar 

  55. Lee MT, Kim JJ, Dinniwell R, Brierley J, Lockwood G, Wong R, Cummings B, Ringash J, Tse RV, Knox JJ, Dawson LA (2009) Phase I study of individualized stereotactic body radiotherapy of liver metastases. J Clin Oncol 27:1585–1591

    PubMed  Google Scholar 

  56. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ (2005) Cancer statistics CA Cancer J Clin 55:10–30

    Google Scholar 

  57. Mayo SC, Pawlik TM (2009) Current management of colorectal hepatic metastasis. Expert Rev Gastroenterol Hepatol 3:131–144

    PubMed  Google Scholar 

  58. Saif MW (2009) Secondary hepatic resection as a therapeutic goal in advanced colorectal cancer. World J Gastroenterol 15:3855–3864

    PubMed  Google Scholar 

  59. Sharma S, Camci C, Jabbour N (2008) Management of hepatic metastasis from colorectal cancers: an update. J Hepatobiliary Pancreat Surg 15:570–580

    PubMed  Google Scholar 

  60. Steele G, Jr, Ravikumar TS (1989) Resection of hepatic metastases from colorectal cancer. Biologic perspective. Ann Surg 210:127–138

    PubMed  Google Scholar 

  61. Greenway CV, Stark RD (1971) Hepatic vascular bed. Physiol Rev 51:23–65

    PubMed  CAS  Google Scholar 

  62. Auguste P, Fallavollita L, Wang N, Burnier J, Bikfalvi A, Brodt P (2007) The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol 170:1781–1792

    PubMed  Google Scholar 

  63. Gout S, Huot J (2008) Role of cancer microenvironment in metastasis: focus on colon cancer. Cancer Microenviron 1:69–83

    PubMed  Google Scholar 

  64. Haier J, Nicolson GL (2001) The role of tumor cell adhesion as an important factor in formation of distant colorectal metastasis. Dis Colon Rectum 44:876–884

    PubMed  CAS  Google Scholar 

  65. Phillips NC (1989) Kupffer cells and liver metastasis. Optimization and limitation of activation of tumoricidal activity. Cancer Metastasis Rev 8:231–252

    PubMed  CAS  Google Scholar 

  66. Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1

    PubMed  Google Scholar 

  67. Martinez-Hernandez A, Amenta PS (1993) The hepatic extracellular matrix. I. Components and distribution in normal liver. Virchows Arch A Pathol Anat Histopathol 423:1–11

    PubMed  CAS  Google Scholar 

  68. Rosenow F, Ossig R, Thormeyer D, Gasmann P, Schluter K, Brunner G, Haier J, Eble JA (2008) Integrins as antimetastatic targets of RGD-independent snake venom components in liver metastasis [corrected]. Neoplasia 10:168–176

    PubMed  CAS  Google Scholar 

  69. Enns A, Gassmann P, Schluter K, Korb T, Spiegel HU, Senninger N, Haier J (2004) Integrins can directly mediate metastatic tumor cell adhesion within the liver sinusoids. J Gastrointest Surg 8:1049–1059; discussion 1060

    PubMed  Google Scholar 

  70. Kemperman H, Driessens MH, La Riviere G, Meijne AM, Roos E (1995) Adhesion mechanisms in liver metastasis formation. Cancer Surv 24:67–79

    PubMed  CAS  Google Scholar 

  71. Schluter K, Gassmann P, Enns A, Korb T, Hemping-Bovenkerk A, Holzen J, Haier J (2006) Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol 169:1064–1073

    PubMed  Google Scholar 

  72. Yoshimura K, Meckel KF, Laird LS, Chia CY, Park JJ, Olino KL, Tsunedomi R, Harada T, Iizuka N, Hazama S, Kato Y, Keller JW, Thompson JM, Chang F, Romer LH, Jain A, Iacobuzio-Donahue C, Oka M, Pardoll DM, Schulick RD (2009) Integrin alpha2 mediates selective metastasis to the liver. Cancer Res 69:7320–7328

    PubMed  CAS  Google Scholar 

  73. Vermeulen PB, Colpaert C, Salgado R, Royers R, Hellemans H, Van Den Heuvel E, Goovaerts G, Dirix LY, Van Marck E (2001) Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J Pathol 195:336–342

    PubMed  CAS  Google Scholar 

  74. Stessels F, Van den Eynden G, Van der Auwera I, Salgado R, Van den Heuvel E, Harris AL, Jackson DG, Colpaert CG, van Marck EA, Dirix LY, Vermeulen PB (2004) Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 90:1429–1436

    PubMed  CAS  Google Scholar 

  75. Mook OR, Van Marle J, Vreeling-Sindelarova H, Jonges R, Frederiks WM, Van Noorden CJ (2003) Visualization of early events in tumor formation of eGFP-transfected rat colon cancer cells in liver. Hepatology 38:295–304

    PubMed  Google Scholar 

  76. Roos E, Van de Pavert IV, Middelkoop OP (1981) Infiltration of tumour cells into cultures of isolated hepatocytes. J Cell Sci 47:385–397

    PubMed  CAS  Google Scholar 

  77. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    PubMed  CAS  Google Scholar 

  78. Zeelenberg IS, Ruuls-Van Stalle L, Roos E (2003) The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res 63:3833–3839

    PubMed  CAS  Google Scholar 

  79. Matsusue R, Kubo H, Hisamori S, Okoshi K, Takagi H, Hida K, Nakano K, Itami A, Kawada K, Nagayama S, Sakai Y (2009) Hepatic Stellate Cells Promote Liver Metastasis of Colon Cancer Cells by the Action of SDF-1/CXCR4 Axis. Ann Surg Oncol 16:2645–2653

    Google Scholar 

  80. Bessette DC, Qiu D, Pallen CJ (2008) PRL PTPs: mediators and markers of cancer progression. Cancer Metastasis Rev 27:231–252

    PubMed  CAS  Google Scholar 

  81. Radke I, Gotte M, Kersting C, Mattsson B, Kiesel L, Wulfing P (2006) Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, PRL-3 in breast cancer. Br J Cancer 95:347–354

    PubMed  CAS  Google Scholar 

  82. Wang L, Peng L, Dong B, Kong L, Meng L, Yan L, Xie Y, Shou C (2006) Overexpression of phosphatase of regenerating liver-3 in breast cancer: association with a poor clinical outcome. Ann Oncol 17:1517–1522

    PubMed  CAS  Google Scholar 

  83. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    PubMed  CAS  Google Scholar 

  84. Lee H, Lin EC, Liu L, Smith JW (2003) Gene expression profiling of tumor xenografts: In vivo analysis of organ-specific metastasis. Int J Cancer 107:528–534

    PubMed  CAS  Google Scholar 

  85. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald WL, Blasberg R, Massague J (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115:44–55

    PubMed  CAS  Google Scholar 

  86. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massague J (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524

    PubMed  CAS  Google Scholar 

  87. Montel V, Huang TY, Mose E, Pestonjamasp K, Tarin D (2005) Expression profiling of primary tumors and matched lymphatic and lung metastases in a xenogeneic breast cancer model. Am J Pathol 166:1565–1579

    PubMed  CAS  Google Scholar 

  88. Rose AA, Pepin F, Russo C, Abou Khalil JE, Hallett M, Siegel PM (2007) Osteoactivin promotes breast cancer metastasis to bone. Mol Cancer Res 5:1001–1014

    PubMed  CAS  Google Scholar 

  89. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, Massague J (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009

    PubMed  CAS  Google Scholar 

  90. Hu Z, Fan C, Livasy C, He X, Oh DS, Ewend MG, Carey LA, Subramanian S, West R, Ikpatt F, Olopade OI, van de Rijn M, Perou CM (2009) A compact VEGF signature associated with distant metastases and poor outcomes. BMC Med 7:9

    PubMed  Google Scholar 

  91. Cai D, Cao J, Li Z, Zheng X, Yao Y, Li W, Yuan Z (2009) Up-regulation of bone marrow stromal protein 2 (BST2) in breast cancer with bone metastasis. BMC Cancer 9:102

    PubMed  Google Scholar 

  92. Bellet RE, Danna V, Mastrangelo MJ, Berd D (1979) Evaluation of a “nude” mouse-human tumor panel as a predictive secondary screen for cancer chemotherapeutic agents. J Natl Cancer Inst 63:1185–1188

    PubMed  CAS  Google Scholar 

  93. Zhang Y, Pu X, Shi M, Chen L, Song Y, Qian L, Yuan G, Zhang H, Yu M, Hu M, Shen B, Guo N (2007) Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model. BMC Cancer 7:145

    PubMed  Google Scholar 

  94. Zhang Y, Pu X, Shi M, Chen L, Qian L, Song Y, Yuan G, Zhang H, Yu M, Hu M, Shen B, Guo N (2007) c-Jun, a crucial molecule in metastasis of breast cancer and potential target for biotherapy. Oncol Rep 18:1207–1212

    PubMed  CAS  Google Scholar 

  95. Honjo Y, Nangia-Makker P, Inohara H, Raz A (2001) Down-regulation of galectin-3 suppresses tumorigenicity of human breast carcinoma cells. Clin Cancer Res 7:661–668

    PubMed  CAS  Google Scholar 

  96. Raz A, Zhu DG, Hogan V, Shah N, Raz T, Karkash R, Pazerini G, Carmi P (1990) Evidence for the role of 34-kDa galactoside-binding lectin in transformation and metastasis. Int J Cancer 46:871–877

    PubMed  CAS  Google Scholar 

  97. Song YK, Billiar TR, Lee YJ (2002) Role of galectin-3 in breast cancer metastasis: involvement of nitric oxide. Am J Pathol 160:1069–1075

    PubMed  CAS  Google Scholar 

  98. Moon BK, Lee YJ, Battle P, Jessup JM, Raz A, Kim HR (2001) Galectin-3 protects human breast carcinoma cells against nitric oxide-induced apoptosis: implication of galectin-3 function during metastasis. Am J Pathol 159:1055–1060

    PubMed  CAS  Google Scholar 

  99. Wai PY, Kuo PC (2004) The role of Osteopontin in tumor metastasis. J Surg Res 121:228–241

    PubMed  CAS  Google Scholar 

  100. Lackner C, Moser R, Bauernhofer T, Wilders-Truschnig M, Samonigg H, Berghold A, Zatloukal K (1998) Soluble CD44 v5 and v6 in serum of patients with breast cancer. Correlation with expression of CD44 v5 and v6 variants in primary tumors and location of distant metastasis. Breast Cancer Res Treat 47:29–40

    PubMed  CAS  Google Scholar 

  101. Ouhtit A, Abd Elmageed ZY, Abdraboh ME, Lioe TF, Raj MH (2007) In vivo evidence for the role of CD44 s in promoting breast cancer metastasis to the liver. Am J Pathol 171:2033–2039

    PubMed  CAS  Google Scholar 

  102. Buck MB, Knabbe C (2006) TGF-beta signaling in breast cancer. Ann N Y Acad Sci 1089:119–126

    PubMed  CAS  Google Scholar 

  103. Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129

    PubMed  CAS  Google Scholar 

  104. Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821

    PubMed  CAS  Google Scholar 

  105. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    PubMed  CAS  Google Scholar 

  106. Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471

    PubMed  CAS  Google Scholar 

  107. Morimoto J, Imai S, Haga S, Iwai Y, Iwai M, Hiroishi S, Miyashita N, Moriwaki K, Hosick HL (1991) New murine mammary tumor cell lines. In Vitro Cell Dev Biol 27A:349–351

    PubMed  CAS  Google Scholar 

  108. Azuma H, Ehata S, Miyazaki H, Watabe T, Maruyama O, Imamura T, Sakamoto T, Kiyama S, Kiyama Y, Ubai T, Inamoto T, Takahara S, Itoh Y, Otsuki Y, Katsuoka Y, Miyazono K, Horie S (2005) Effect of Smad7 expression on metastasis of mouse mammary carcinoma JygMC(A) cells. J Natl Cancer Inst 97:1734–1746

    PubMed  CAS  Google Scholar 

  109. Ehata S, Hanyu A, Hayashi M, Aburatani H, Kato Y, Fujime M, Saitoh M, Miyazawa K, Imamura T, Miyazono K (2007) Transforming growth factor-beta promotes survival of mammary carcinoma cells through induction of antiapoptotic transcription factor DEC1. Cancer Res 67:9694–9703

    PubMed  CAS  Google Scholar 

  110. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52:1399–1405

    PubMed  CAS  Google Scholar 

  111. Dexter DL, Kowalski HM, Blazar BA, Fligiel Z, Vogel R, Heppner GH (1978) Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res 38:3174–3181

    PubMed  CAS  Google Scholar 

  112. Heppner GH, Dexter DL, DeNucci T, Miller FR, Calabresi P (1978) Heterogeneity in drug sensitivity among tumor cell subpopulations of a single mammary tumor. Cancer Res 38:3758–3763

    PubMed  CAS  Google Scholar 

  113. Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P, Lowen D, Javni J, Miller FR, Slavin J, Anderson RL (1999) A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17:163–170

    PubMed  CAS  Google Scholar 

  114. Manka D, Spicer Z, Millhorn DE (2005) Bcl-2/adenovirus E1B 19 kDa interacting protein-3 knockdown enables growth of breast cancer metastases in the lung, liver, and bone. Cancer Res 65:11689–11693

    PubMed  CAS  Google Scholar 

  115. Soria G, Ben-Baruch A (2008) The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 267:271–285

    PubMed  CAS  Google Scholar 

  116. Niwa Y, Akamatsu H, Niwa H, Sumi H, Ozaki Y, Abe A (2001) Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clin Cancer Res 7:285–289

    PubMed  CAS  Google Scholar 

  117. Schall TJ, Jongstra J, Dyer BJ, Jorgensen J, Clayberger C, Davis MM, Krensky AM (1988) A human T cell-specific molecule is a member of a new gene family. J Immunol 141:1018–1025

    PubMed  CAS  Google Scholar 

  118. Soria G, Yaal-Hahoshen N, Azenshtein E, Shina S, Leider-Trejo L, Ryvo L, Cohen-Hillel E, Shtabsky A, Ehrlich M, Meshel T, Keydar I, Ben-Baruch A (2008) Concomitant expression of the chemokines RANTES and MCP-1 in human breast cancer: a basis for tumor-promoting interactions. Cytokine 44:191–200

    PubMed  CAS  Google Scholar 

  119. Stormes KA, Lemken CA, Lepre JV, Marinucci MN, Kurt RA (2005) Inhibition of metastasis by inhibition of tumor-derived CCL5. Breast Cancer Res Treat 89:209–212

    PubMed  CAS  Google Scholar 

  120. Fanto M, McNeill H (2004) Planar polarity from flies to vertebrates. J Cell Sci 117:527–533

    PubMed  CAS  Google Scholar 

  121. Bienz M (2005) beta-Catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol 15:R64–67

    PubMed  CAS  Google Scholar 

  122. Keeble TR, Halford MM, Seaman C, Kee N, Macheda M, Anderson RB, Stacker SA, Cooper HM (2006) The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J Neurosci 26:5840–5848

    PubMed  CAS  Google Scholar 

  123. Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y (2003) Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol 162:899–908

    PubMed  CAS  Google Scholar 

  124. Jonsson M, Andersson T (2001) Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. J Cell Sci 114:2043–2053

    PubMed  CAS  Google Scholar 

  125. Smalley MJ, Dale TC (2001) Wnt signaling and mammary tumorigenesis. J Mammary Gland Biol Neoplasia 6:37–52

    PubMed  CAS  Google Scholar 

  126. Hatsell S, Rowlands T, Hiremath M, Cowin P (2003) Beta-catenin and Tcfs in mammary development and cancer. J Mammary Gland Biol Neoplasia 8:145–158

    PubMed  Google Scholar 

  127. Huelsken J, Behrens J (2002) The Wnt signalling pathway. J Cell Sci 115:3977–3978

    PubMed  CAS  Google Scholar 

  128. Dejmek J, Safholm A, Kamp Nielsen C, Andersson T, Leandersson K (2006) Wnt-5a/Ca2+-induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase 1alpha signaling in human mammary epithelial cells. Mol Cell Biol 26:6024–6036

    PubMed  CAS  Google Scholar 

  129. Saneyoshi T, Kume S, Amasaki Y, Mikoshiba K (2002) The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature 417:295–299

    PubMed  CAS  Google Scholar 

  130. Dejmek J, Dejmek A, Safholm A, Sjolander A, Andersson T (2005) Wnt-5a protein expression in primary dukes B colon cancers identifies a subgroup of patients with good prognosis. Cancer Res 65:9142–9146

    PubMed  CAS  Google Scholar 

  131. Dejmek J, Leandersson K, Manjer J, Bjartell A, Emdin SO, Vogel WF, Landberg G, Andersson T (2005) Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clin Cancer Res 11:520–528

    PubMed  CAS  Google Scholar 

  132. Jonsson M, Dejmek J, Bendahl PO, Andersson T (2002) Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res 62:409–416

    PubMed  CAS  Google Scholar 

  133. Safholm A, Tuomela J, Rosenkvist J, Dejmek J, Harkonen P, Andersson T (2008) The Wnt-5a-derived hexapeptide Foxy-5 inhibits breast cancer metastasis in vivo by targeting cell motility. Clin Cancer Res 14:6556–6563

    PubMed  Google Scholar 

  134. Turksen K, Troy TC (2004) Barriers built on claudins. J Cell Sci 117:2435–2447

    PubMed  CAS  Google Scholar 

  135. Kramer F, White K, Kubbies M, Swisshelm K, Weber BH (2000) Genomic organization of claudin-1 and its assessment in hereditary and sporadic breast cancer. Hum Genet 107:249–256

    PubMed  CAS  Google Scholar 

  136. Kominsky SL, Argani P, Korz D, Evron E, Raman V, Garrett E, Rein A, Sauter G, Kallioniemi OP, Sukumar S (2003) Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 22:2021–2033

    PubMed  CAS  Google Scholar 

  137. Sauer T, Pedersen MK, Ebeltoft K, Naess O (2005) Reduced expression of Claudin-7 in fine needle aspirates from breast carcinomas correlate with grading and metastatic disease. Cytopathology 16:193–198

    PubMed  CAS  Google Scholar 

  138. Erin N, Zhao W, Bylander J, Chase G, Clawson G (2006) Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Breast Cancer Res Treat 99:351–364

    PubMed  CAS  Google Scholar 

  139. Erin N, Wang N, Xin P, Bui V, Weisz J, Barkan GA, Zhao W, Shearer D, Clawson GA (2009) Altered gene expression in breast cancer liver metastases. Int J Cancer 124:1503–1516

    PubMed  CAS  Google Scholar 

  140. Tabariès S, Dong Z, Annis MG, Omeroglu A, Pepin F, Ouellet V, Russo C, Hassanain M, Metrakos P, Diaz Z, Basik M, Bertos N, Park M, Guettier C, Adam R, Hallett M, Siegel PM (2010) Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene aop. doi:10.1038/onc.2010.518

    Google Scholar 

  141. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones LP, Assefnia S, Chandrasekharan S, Backlund MG, Yin Y, Khramtsov AI, Bastein R, Quackenbush J, Glazer RI, Brown PH, Green JE, Kopelovich L, Furth PA, Palazzo JP, Olopade OI, Bernard PS, Churchill GA, Van Dyke T, Perou CM (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8:R76

    PubMed  Google Scholar 

  142. Morin PJ (2005) Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res 65:9603–9606

    PubMed  CAS  Google Scholar 

  143. Kinugasa T, Huo Q, Higashi D, Shibaguchi H, Kuroki M, Tanaka T, Futami K, Yamashita Y, Hachimine K, Maekawa S, Nabeshima K, Iwasaki H (2007) Selective up-regulation of claudin-1 and claudin-2 in colorectal cancer. Anticancer Res 27:3729–3734

    PubMed  CAS  Google Scholar 

  144. Soini Y (2004) Claudins 2, 3, 4, 5 in Paget's disease and breast carcinoma. Hum Pathol 35:1531–1536

    PubMed  CAS  Google Scholar 

  145. Kim TH, Huh JH, Lee S, Kang H, Kim GI, An HJ (2008) Down-regulation of claudin-2 in breast carcinomas is associated with advanced disease. Histopathology 53:48–55

    PubMed  CAS  Google Scholar 

  146. Ladwein M, Pape UF, Schmidt DS, Schnolzer M, Fiedler S, Langbein L, Franke WW, Moldenhauer G, Zoller M (2005) The cell-cell adhesion molecule EpCAM interacts directly with the tight junction protein claudin-7. Exp Cell Res 309:345–357

    PubMed  CAS  Google Scholar 

  147. Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811

    PubMed  CAS  Google Scholar 

  148. Lazo PA (2007) Functional implications of tetraspanin proteins in cancer biology. Cancer Sci 98:1666–1677

    PubMed  CAS  Google Scholar 

  149. Bissell MJ, Kenny PA, Radisky DC (2005) Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harb Symp Quant Biol 70:343–356

    PubMed  CAS  Google Scholar 

  150. DiMeo TA, Kuperwasser C (2006) The evolving paradigm of tissue-specific metastasis. Breast Cancer Res 8:301

    PubMed  Google Scholar 

  151. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    PubMed  CAS  Google Scholar 

  152. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    PubMed  CAS  Google Scholar 

  153. Psaila B, Kaplan RN, Port ER, Lyden D (2006) Priming the ‘soil’ for breast cancer metastasis: the pre-metastatic niche. Breast Dis 26:65–74

    PubMed  CAS  Google Scholar 

  154. Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25:521–529

    PubMed  Google Scholar 

  155. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia AJ (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44

    PubMed  CAS  Google Scholar 

  156. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375

    PubMed  CAS  Google Scholar 

  157. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13:23–35

    PubMed  CAS  Google Scholar 

  158. DuPre SA, Redelman D, Hunter KW Jr (2007) The mouse mammary carcinoma 4T1: characterization of the cellular landscape of primary tumours and metastatic tumour foci. Int J Exp Pathol 88:351–360

    PubMed  CAS  Google Scholar 

  159. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    PubMed  CAS  Google Scholar 

  160. Ilkovitch D, Lopez DM (2009) The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Res 69:5514–5521

    Google Scholar 

  161. Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, Shipley JM, Senior RM, Shibuya M (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2:289–300

    PubMed  CAS  Google Scholar 

  162. McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA, Reinhardt F, Harris LN, Hylander BL, Repasky EA, Weinberg RA (2008) Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133:994–1005

    PubMed  CAS  Google Scholar 

  163. Jung T, Castellana D, Klingbeil P, Hernandez IC, Vitacolonna M, Orlicky DJ, Roffler SR, Brodt P, Zoller (2009) M CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia 11:1093–1105

    PubMed  CAS  Google Scholar 

  164. Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mansson H (2007) The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomarkers Prev 16:1087–1097

    PubMed  CAS  Google Scholar 

  165. Tuck AB, Chambers AF, Allan AL (2007) Osteopontin overexpression in breast cancer: knowledge gained and possible implications for clinical management. J Cell Biochem 102:859–868

    PubMed  CAS  Google Scholar 

  166. Pinilla S, Alt E, Abdul Khalek FJ, Jotzu C, Muehlberg F, Beckmann C, Song YH (2009) Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett 284:80–85

    Google Scholar 

  167. Chabot V, Reverdiau P, Iochmann S, Rico A, Senecal D, Goupille C, Sizaret PY, Sensebe L (2006) CCL5-enhanced human immature dendritic cell migration through the basement membrane in vitro depends on matrix metalloproteinase-9. J Leukoc Biol 79:767–778

    PubMed  CAS  Google Scholar 

  168. Muehlberg FL, Song YH, Krohn A, Pinilla SP, Droll LH, Leng X, Seidensticker M, Ricke J, Altman AM, Devarajan E, Liu W, Arlinghaus RB, Alt EU (2009) Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis 30:589–597

    PubMed  CAS  Google Scholar 

  169. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Siegel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tabariès, S., Siegel, P.M. (2011). Breast Cancer Liver Metastasis. In: Brodt, P. (eds) Liver Metastasis: Biology and Clinical Management. Cancer Metastasis - Biology and Treatment, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0292-9_10

Download citation

Publish with us

Policies and ethics