Skip to main content

The Role of Transient Receptor Potential Channels in Respiratory Symptoms and Pathophysiology

  • Chapter
  • First Online:
Transient Receptor Potential Channels

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 704))

Abstract

The Transient Receptor Potential channels constitute a superfamily of ion channels that is unmatched in its functional diversity. Recent research employing pharmacological and genetic methods has demonstrated that these channels are widely distributed within the respiratory tract, where they may mechanistically link noxious irritant exposures and inflammation to heightened airway reflex sensitivity, pathological remodeling and airflow limitation. Herein, we summarize the state of the art in this rapidly expanding area, emphasizing the known roles of Transient Receptor Potential channels in airway sensory nerves in addition to highlighting their roles in non-excitable cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu G, Investigators ICGN, Gulsvik A, Bakke P, Ghatta S, Anderson W, Lomas DA, Silverman EK, Pillai SG (2009) Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum Mol Genet 18:2053–2062

    CAS  PubMed  Google Scholar 

  2. Fuller RW (1991) Pharmacology of inhaled capsaicin in humans. Respir Med 85:31–34

    PubMed  Google Scholar 

  3. Basoglu OK, Pelleg A, Essilfie-Quaye S, Brindicci C, Barnes PJ, Kharitonov SA (2005) Effects of Aerosolized Adenosine 5ΓǦ-Triphosphate-Triphosphate vs Adenosine 5ΓǦ-Monophosphate on Dyspnea and Airway Caliber in Healthy Nonsmokers and Patients With Asthma*. Chest 128:1905–1909

    Google Scholar 

  4. Fuller RW, Dixon CM, Barnes PJ (1985) Bronchoconstrictor response to inhaled capsaicin in humans. J Appl Physiol 58:1080–1084

    CAS  PubMed  Google Scholar 

  5. Pecova R, Javorkova N, Kudlicka J, Tatar M (2007) Tussigenic agents in the measurement of cough reflex sensitivity. J Physiol Pharmacol 58(Suppl 5):531–538

    PubMed  Google Scholar 

  6. Hope-Gill BDM, Hilldrup S, Davies C, Newton RP, Harrison NK (2003) A Study of the Cough Reflex in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 168: 995–1002

    PubMed  Google Scholar 

  7. Tatar M, Plevkova J, Brozmanova M, Pecova R, Kollarik M (2009) Mechanisms of the cough associated with rhinosinusitis. Pulm Pharmacol Ther 22:121–126

    CAS  PubMed  Google Scholar 

  8. Sitkauskiene B, Stravinskaite K, Sakalauskas R, Dicpinigaitis PV (2007) Changes in cough reflex sensitivity after cessation and resumption of cigarette smoking. Pulm Pharmacol Ther 20:240–243

    CAS  PubMed  Google Scholar 

  9. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    CAS  PubMed  Google Scholar 

  10. Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187

    CAS  PubMed  Google Scholar 

  11. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired Nociception and Pain Sensation in Mice Lacking the Capsaicin Receptor. Science 288:306–313

    CAS  PubMed  Google Scholar 

  12. Gavva NR, Tamir R, Qu Y, Klionsky L, Zhang TJ, Immke D, Wang J, Zhu D, Vanderah TW, Porreca F, Doherty EM, Norman MH, Wild KD, Bannon AW, Louis JC, Treanor JJS (2005) AMG 9810 [(E)-3-(4-t-Butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a Novel Vanilloid Receptor 1 (TRPV1) Antagonist with Antihyperalgesic Properties. J Pharmacol Exp Ther 313:474–484

    CAS  PubMed  Google Scholar 

  13. Gavva NR, Bannon AW, Hovland DN Jr, Lehto SG, Klionsky L, Surapaneni S, Immke DC, Henley C, Arik L, Bak A, Davis J, Ernst N, Hever G, Kuang R, Shi L, Tamir R, Wang J, Wang W, Zajic G, Zhu D, Norman MH, Louis JC, Magal E, Treanor JJ (2007) Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade. J Pharmacol Exp Ther 323:128–137

    CAS  PubMed  Google Scholar 

  14. Symanowicz PT, Gianutsos G, Morris JB (2004) Lack of role for the vanilloid receptor in response to several inspired irritant air pollutants in the C57Bl/6 J mouse. Neurosci Lett 362:150–153

    CAS  PubMed  Google Scholar 

  15. Kollarik M, Undem BJ (2004) Activation of bronchopulmonary vagal afferent nerves with bradykinin, acid and vanilloid receptor agonists in wild-type and TRPV1–/– mice. J Physiol (Lond) 555:115–123

    CAS  Google Scholar 

  16. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli. Neuron 21:531–543

    CAS  PubMed  Google Scholar 

  17. Dhaka A, Uzzell V, Dubin AE, Mathur J, Petrus M, Bandell M, Patapoutian A (2009) TRPV1 Is Activated by Both Acidic and Basic pH. J Neurosci 29:153–158

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Ahern GP (2003) Activation of TRPV1 by the Satiety Factor Oleoylethanolamide. J Biol Chem 278:30429–30434

    CAS  PubMed  Google Scholar 

  19. Patwardhan AM, Scotland PE, Akopian AN, Hargreaves KM (2009) Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. PNAS 106:18820–18824

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Chuang Hh, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962

    CAS  PubMed  Google Scholar 

  21. Shim WS, Tak MH, Lee MH, Kim M, Kim M, Koo JY, Lee CH, Kim M, Oh U (2007) TRPV1 Mediates Histamine-Induced Itching via the Activation of Phospholipase A2 and 12-Lipoxygenase. J Neurosci 27:2331–2337

    CAS  PubMed  Google Scholar 

  22. Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ (2002) p38 MAPK Activation by NGF in Primary Sensory Neurons after Inflammation Increases TRPV1 Levels and Maintains Heat Hyperalgesia. Neuron 36:57–68

    CAS  PubMed  Google Scholar 

  23. Chuang Hh, Lin S (2009) Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification. PNAS 106:20097–20102

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Braun A, Lommatzsch M, Neuhaus-Steinmetz U, Quarcoo D, Glaab T, McGregor GP, Fischer A, Renz H (2004) Brain-derived neurotrophic factor (BDNF) contributes to neuronal dysfunction in a model of allergic airway inflammation. Br J Pharmacol 141: 431–440

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Hazari MS, Rowan WH, Winsett DW, Ledbetter AD, Haykal-Coates N, Watkinson WP, Costa DL Potentiation of pulmonary reflex response to capsaicin 24 h following whole-body acrolein exposure is mediated by TRPV1. Respir Physiol Neurobiol (in press, Corrected Proof)

    Google Scholar 

  26. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW (2003) ANKTM1, a TRP-like Channel Expressed in Nociceptive Neurons, Is Activated by Cold Temperatures. Cell 112:819–829

    CAS  PubMed  Google Scholar 

  27. Kremeyer B, Lopera F, Cox JJ, Momin A, Rugiero F, Marsh S, Woods CG, Jones NG, Paterson KJ, Fricker FR, Villegas A, Acosta N, Pineda-Trujillo NG, Ramírez JD, Zea J, Burley MW, Bedoya G, Bennett DLH, Wood JN, Ruiz-Linares A (2010) A Gain-of-Function Mutation in TRPA1 Causes Familial Episodic Pain Syndrome. Neuron 66: 671–680

    CAS  PubMed  Google Scholar 

  28. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 Mediates the Inflammatory Actions of Environmental Irritants and Proalgesic Agents. Cell 124:1269–1282

    CAS  PubMed  Google Scholar 

  29. Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andre E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. PNAS 104:13519–13524

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Taylor-Clark TE, Undem BJ, MacGlashan DW Jr, Ghatta S, Carr MJ, McAlexander MA (2008) Prostaglandin-Induced Activation of Nociceptive Neurons via Direct Interaction with Transient Receptor Potential A1 (TRPA1). Mol Pharmacol 73:274–281

    CAS  PubMed  Google Scholar 

  31. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious Cold Ion Channel TRPA1 Is Activated by Pungent Compounds and Bradykinin. Neuron 41:849–857

    CAS  PubMed  Google Scholar 

  32. Jordt SE, Bautista DM, Chuang Hh, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    CAS  PubMed  Google Scholar 

  33. Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE (2008) TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 118:1899–1910

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Taylor-Clark TE, Kiros F, Carr MJ, McAlexander MA (2009) Transient Receptor Potential Ankyrin 1 Mediates Toluene Diisocyanate-Evoked Respiratory Irritation. Am J Respir Cell Mol Biol 40:756–762

    PubMed Central  CAS  PubMed  Google Scholar 

  35. McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM (2007) TRPA1 mediates formalin-induced pain. PNAS 104:13525–13530

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Hinman A, Chuang Hh, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. PNAS 103:19564–19568

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–545

    CAS  PubMed  Google Scholar 

  38. Birrell MA, Belvisi MG, Grace M, Sadofsky L, Faruqi S, Hele DJ, Maher SA, Freund-Michel V, Morice AH (2009) TRPA1 Agonists Evoke Coughing in Guinea Pig and Human Volunteers. Am J Respir Crit Care Med 180:1042–1047

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Bessac BF, Sivula M, von Hehn CA, Caceres AI, Escalera J, Jordt SE (2009) Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases. FASEB J 23:1102–1114

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, Cravatt B, Corey DP, Patapoutian A (2007) An Ion Channel Essential for Sensing Chemical Damage. J Neurosci 27:11412–11415

    CAS  PubMed  Google Scholar 

  41. Matta JA, Cornett PM, Miyares RL, Abe K, Sahibzada N, Ahern GP (2008) General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. PNAS 105:8784–8789

    PubMed Central  CAS  PubMed  Google Scholar 

  42. TerRiet MF, DeSouza GJA, Jacobs JS, Young D, Lewis MC, Herrington C, Gold MI (2000) Which is most pungent: isoflurane, sevoflurane or desflurane? Br J Anaesth 85:305–307

    CAS  PubMed  Google Scholar 

  43. Satoh JI, Yamakage M (2009) Desflurane induces airway contraction mainly by activating transient receptor potential A1 of sensory C-fibers. J Anesth 23:620–623

    PubMed  Google Scholar 

  44. Taylor-Clark TE, McAlexander MA, Nassenstein C, Sheardown SA, Wilson S, Thornton J, Carr MJ, Undem BJ (2008) Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal. J Physiol 586:3447–3459

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Andersson DA, Gentry C, Moss S, Bevan S (2008) Transient Receptor Potential A1 Is a Sensory Receptor for Multiple Products of Oxidative Stress. J Neurosci 28:2485–2494

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Taylor-Clark TE, Ghatta S, Bettner W, Undem BJ (2009) Nitrooleic Acid, an Endogenous Product of Nitrative Stress, Activates Nociceptive Sensory Nerves via the Direct Activation of TRPA1. Mol Pharmacol 75:820–829

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:1979–1987

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Andersson DA, Gentry C, Moss S, Bevan S (2009) Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+. PNAS 106:8374–8379

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Hu H, Bandell M, Petrus MJ, Zhu MX, Patapoutian A (2009) Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol 5:183–190

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Miyamoto T, Dubin AE, Petrus MJ, Patapoutian A (2009) TRPV1 and TRPA1 Mediate Peripheral Nitric Oxide-Induced Nociception in Mice. PLoS One 4:e7596

    PubMed Central  PubMed  Google Scholar 

  51. Doerner JF, Gisselmann G, Hatt H, Wetzel CH (2007) Transient receptor potential channel A1 is directly gated by calcium ions. J Biol Chem 282:13180–13189, M607849200

    CAS  PubMed  Google Scholar 

  52. Talavera K, Gees M, Karashima Y, Meseguer VM, Vanoirbeek JAJ, Damann N, Everaerts W, Benoit M, Janssens A, Vennekens R, Viana F, Nemery B, Nilius B, Voets T (2009) Nicotine activates the chemosensory cation channel TRPA1. Nat Neurosci 12:1293–1299

    CAS  PubMed  Google Scholar 

  53. Caceres AI, Brackmann M, Elia MD, Bessac BF, del Camino D, D’Amours M, Witek JS, Fanger CM, Chong JA, Hayward NJ, Homer RJ, Cohn L, Huang X, Moran MM, Jordt SE (2009) A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. PNAS 106:9099–9104

    PubMed Central  CAS  PubMed  Google Scholar 

  54. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    CAS  PubMed  Google Scholar 

  55. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP Channel that Senses Cold Stimuli and Menthol. Cell 108:705–715

    CAS  PubMed  Google Scholar 

  56. Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B (2007) Bimodal Action of Menthol on the Transient Receptor Potential Channel TRPA1. J Neurosci 27:9874–9884

    CAS  PubMed  Google Scholar 

  57. Macpherson LJ, Hwang SW, Miyamoto T, Dubin AE, Patapoutian A, Story GM (2006) More than cool: Promiscuous relationships of menthol and other sensory compounds. Mol Cell Neurosci 32:335–343

    CAS  PubMed  Google Scholar 

  58. Lumme A, Haahtela T, Ounap J, Rytila P, Obase Y, Helenius M, Remes V, Helenius I (2003) Airway inflammation, bronchial hyperresponsiveness and asthma in elite ice hockey players. Eur Respir J 22:113–117

    CAS  PubMed  Google Scholar 

  59. Naito K, Komori M, Kondo Y, Takeuchi M, Iwata S (1997) The effect of l-menthol stimulation of the major palatine nerve on subjective and objective nasal patency. Auris Nasus Larynx 24:159–162

    CAS  PubMed  Google Scholar 

  60. Eccles R (2003) Menthol: Effects on nasal sensation of airflow and the drive to breathe. Curr Allergy Asthma Rep 3:210–214

    PubMed  Google Scholar 

  61. Ito S, Kume H, Shiraki A, Kondo M, Makino Y, Kamiya K, Hasegawa Y (2008) Inhibition by the cold receptor agonists menthol and icilin of airway smooth muscle contraction. Pulm Pharmacol Ther 21:812–817

    CAS  PubMed  Google Scholar 

  62. Andersson DA, Nash M, Bevan S (2007) Modulation of the Cold-Activated Channel TRPM8 by Lysophospholipids and Polyunsaturated Fatty Acids. J Neurosci 27:3347–3355

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Vanden Abeele F, Zholos A, Bidaux G, Shuba Y, Thebault S, Beck B, Flourakis M, Panchin Y, Skryma R, Prevarskaya N (2006) iPLA2-dependent gating of TRPM8 by lysophospholipids. J Biol Chem 281:40174–40182, M605779200

    CAS  PubMed  Google Scholar 

  64. Chilton FH, Averill FJ, Hubbard WC, Fonteh AN, Triggiani M, Liu MC (1996) Antigen-induced generation of lyso-phospholipids in human airways. J Exp Med 183:2235–2245

    CAS  PubMed  Google Scholar 

  65. Hu H, Tian J, Zhu Y, Wang C, Xiao R, Herz J, Wood J, Zhu M (2010) Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflugers Arch 459:579–592

    PubMed Central  CAS  PubMed  Google Scholar 

  66. White TA, Xue A, Chini EN, Thompson M, Sieck GC, Wylam ME (2006) Role of Transient Receptor Potential C3 in TNF-{alpha}-Enhanced Calcium Influx in Human Airway Myocytes. Am J Respir Cell Mol Biol 35:243–251

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Corteling RL, Li S, Giddings J, Westwick J, Poll C, Hall IP (2004) Expression of Transient Receptor Potential C6 and Related Transient Receptor Potential Family Members in Human Airway Smooth Muscle and Lung Tissue. Am J Respir Cell Mol Biol 30:145–154

    CAS  PubMed  Google Scholar 

  68. Yu Y, Sweeney M, Zhang S, Platoshyn O, Landsberg J, Rothman A, Yuan JXJ (2003) PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol Cell Physiol 284:C316–C330

    CAS  PubMed  Google Scholar 

  69. Lin MJ, Leung GPH, Zhang WM, Yang XR, Yip KP, Tse CM, Sham JSK (2004) Chronic Hypoxia-Induced Upregulation of Store-Operated and Receptor-Operated Ca2+ Channels in Pulmonary Arterial Smooth Muscle Cells: A Novel Mechanism of Hypoxic Pulmonary Hypertension. Circ Res 95:496–505

    CAS  PubMed  Google Scholar 

  70. Damann N, Owsianik G, Li S, Poll C, Nilius B (2009) The calcium-conducting ion channel transient receptor potential canonical 6 is involved in macrophage inflammatory protein-2-induced migration of mouse neutrophils. Acta Physiol 195:3–11

    CAS  Google Scholar 

  71. Finney-Hayward TK, Popa O, Bahra P, Li S, Poll CT, Gosling M, Nicholson AG, Russell REK, Kon OM, Jarai G, Westwick J, Barnes PJ, Donnelly LE (2010) Expression of TRPC6 channels in human lung macrophages. Am J Respir Cell Mol Biol 43(6): 296–304

    CAS  PubMed  Google Scholar 

  72. Sel S, Rost BR, Yildirim AO, Sel B, Kalwa H, Fehrenbach H, Renz H, Gudermann T, Dietrich A (2008) Loss of classical transient receptor potential 6 channel reduces allergic airway response. Clin Exp Allergy 38(9):1548–1558

    CAS  PubMed  Google Scholar 

  73. Hong CW, Kim TK, Ham HY, Nam JS, Kim YH, Zheng H, Pang B, Min TK, Jung JS, Lee SN, Cho HJ, Kim EJ, Hong IH, Kang TC, Lee J, Oh SB, Jung SJ, Kim SJ, Song DK (2010) Lysophosphatidylcholine Increases Neutrophil Bactericidal Activity by Enhancement of Azurophil Granule-Phagosome Fusion via Glycine{middle dot}GlyR{alpha}2/TRPM2/p38 MAPK Signaling. J Immunol 184:4401–4413

    CAS  PubMed  Google Scholar 

  74. Hecquet CM, Ahmmed GU, Vogel SM, Malik AB (2007) Role of TRPM2 Channel in Mediating H2O2-Induced Ca2+ Entry and Endothelial Hyperpermeability. Circ Res 102(3):347–355

    PubMed  Google Scholar 

  75. Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, Kiuchi Y, Okada T, Kaneko S, Lange I, Fleig A, Penner R, Nishi M, Takeshima H, Mori Y (2008) TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14:738–747

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Ishii M, Shimizu S, Hara Y, Hagiwara T, Miyazaki A, Mori Y, Kiuchi Y (2006) Intracellular-produced hydroxyl radical mediates H2O2-induced Ca2+ influx and cell death in rat [beta]-cell line RIN-5F. Cell Calcium 39:487–494

    CAS  PubMed  Google Scholar 

  77. Wagner TFJ, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Dufer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic [beta] cells. Nat Cell Biol 10:1421–1430

    CAS  PubMed  Google Scholar 

  78. Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE, Schmitz F, Weissgerber P, Nilius B, Flockerzi V, Freichel M (2007) Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 8:312–320

    CAS  PubMed  Google Scholar 

  79. Shimizu T, Owsianik G, Freichel M, Flockerzi V, Nilius B, Vennekens R (2009) TRPM4 regulates migration of mast cells in mice. Cell Calcium 45:226–232

    CAS  PubMed  Google Scholar 

  80. Barbet G, Demion M, Moura IC, Serafini N, Leger T, Vrtovsnik F, Monteiro RC, Guinamard R, Kinet JP, Launay P (2008) The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat Immunol 9:1148–1156

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Gerzanich V, Woo SK, Vennekens R, Tsymbalyuk O, Ivanova S, Ivanov A, Geng Z, Chen Z, Nilius B, Flockerzi V, Freichel M, Simard JM (2009) De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat Med 15:185–191

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE (2008) Deletion of Trpm7 Disrupts Embryonic Development and Thymopoiesis Without Altering Mg2+ Homeostasis. Science 322:756–760

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Wykes RCE, Lee M, Duffy SM, Yang W, Seward EP, Bradding P (2007) Functional Transient Receptor Potential Melastatin 7 Channels Are Critical for Human Mast Cell Survival. J Immunol 179:4045–4052

    CAS  PubMed  Google Scholar 

  84. Du J, Xie J, Zhang Z, Tsujikawa H, Fusco D, Silverman D, Liang B, Yue L (2010) TRPM7-Mediated Ca2+ Signals Confer Fibrogenesis in Human Atrial Fibrillation. Circ Res 106:992–1003

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Colburn RW, Lubin ML, Stone J, Wang Y, Lawrence D, D’Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N (2007) Attenuated Cold Sensitivity in TRPM8 Null Mice. Neuron 54:379–386

    CAS  PubMed  Google Scholar 

  86. Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A (2007) TRPM8 Is Required for Cold Sensation in Mice. Neuron 54:371–378

    CAS  PubMed  Google Scholar 

  87. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–208

    CAS  PubMed  Google Scholar 

  88. Agopyan N, Bhatti T, Yu S, Simon SA (2003) Vanilloid receptor activation by 2- and 10-[mu]m particles induces responses leading to apoptosis in human airway epithelial cells. Toxicol Appl Pharmacol 192:21–35

    CAS  PubMed  Google Scholar 

  89. Agopyan N, Head J, Yu S, Simon SA (2004) TRPV1 receptors mediate particulate matter-induced apoptosis. Am J Physiol Lung Cell Mol Physiol 286:L563–L572

    CAS  PubMed  Google Scholar 

  90. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    CAS  PubMed  Google Scholar 

  91. Woodbury CJ, Zwick M, Wang S, Lawson JJ, Caterina MJ, Koltzenburg M, Albers KM, Koerber HR, Davis BM (2004) Nociceptors Lacking TRPV1 and TRPV2 Have Normal Heat Responses. J Neurosci 24:6410–6415

    CAS  PubMed  Google Scholar 

  92. Neeper MP, Liu Y, Hutchinson TL, Wang Y, Flores CM, Qin N (2007) Activation Properties of Heterologously Expressed Mammalian TRPV2. J Biol Chem 282:15894–15902

    CAS  PubMed  Google Scholar 

  93. Yamamoto Y, Taniguchi K (2005) Immunolocalization of VR1 and VRL1 in rat larynx. Auton Neurosci 117:62–65

    CAS  PubMed  Google Scholar 

  94. Lewinter RD, Scherrer G, Basbaum AI (2008) Dense transient receptor potential cation channel, vanilloid family, type 2 (TRPV2) immunoreactivity defines a subset of motoneurons in the dorsal lateral nucleus of the spinal cord, the nucleus ambiguus and the trigeminal motor nucleus in rat. Neuroscience 151:164–173

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Nagasawa M, Nakagawa Y, Tanaka S, Kojima I (2007) Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages. J Cell Physiol 210(3):692–702

    CAS  PubMed  Google Scholar 

  96. Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, Caterina MJ (2010) TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol 11:232–239

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186

    CAS  PubMed  Google Scholar 

  98. Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L, Egerton J, Charles KJ, Smart D, Randall AD, Anand P, Davis JB (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186–190

    CAS  PubMed  Google Scholar 

  99. Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004) TRPV3 and TRPV4 Mediate Warmth-evoked Currents in Primary Mouse Keratinocytes. J Biol Chem 279:21569–21575

    CAS  PubMed  Google Scholar 

  100. Huang SM, Lee H, Chung MK, Park U, Yu YY, Bradshaw HB, Coulombe PA, Walker JM, Caterina MJ (2008) Overexpressed Transient Receptor Potential Vanilloid 3 Ion Channels in Skin Keratinocytes Modulate Pain Sensitivity via Prostaglandin E2. J Neurosci 28:13727–13737

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Xiao R, Tian J, Tang J, Zhu MX (2008) The TRPV3 mutation associated with the hairless phenotype in rodents is constitutively active. Cell Calcium 43:334–343

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Imura K, Yoshioka T, Hirasawa T, Sakata T (2009) Role of TRPV3 in immune response to development of dermatitis. J Inflamm 6:17

    Google Scholar 

  103. Yoshioka T, Imura K, Asakawa M, Suzuki M, Oshima I, Hirasawa T, Sakata T, Horikawa T, Arimura A (2009) Impact of the Gly573Ser Substitution in TRPV3 on the Development of Allergic and Pruritic Dermatitis in Mice. J Invest Dermatol 129:714–722

    CAS  PubMed  Google Scholar 

  104. Cheng X, Jin J, Hu L, Shen D, Dong Xp, Samie MA, Knoff J, Eisinger B, Liu Ml, Huang SM, Caterina MJ, Dempsey P, Michael LE, Dlugosz AA, Andrews NC, Clapham DE, Xu H (2010) TRP Channel Regulates EGFR Signaling in Hair Morphogenesis and Skin Barrier Formation. Cell 141:331–343

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Bonini S, Lambiase A, Bonini S, Angelucci F, Magrini L, Manni L, Aloe L (1996) Circulating nerve growth factor levels are increased in humans with allergic diseases and asthma. Proc Natl Acad Sci USA 93:10955–10960

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4–/– mice. PNAS 100:13698–13703

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Suzuki M, Mizuno A, Kodaira K, Imai M (2003) Impaired Pressure Sensation in Mice Lacking TRPV4. J Biol Chem 278:22664–22668

    CAS  PubMed  Google Scholar 

  108. Birder L, Kullmann FA, Lee H, Barrick S, de Groat W, Kanai A, Caterina M (2007) Activation of Urothelial-TRPV4 by 4{alpha}PDD contributes to altered bladder reflexes in the rat. J Pharmacol Exp Ther 323(1):227–235

    CAS  PubMed  Google Scholar 

  109. Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP, Chendrimada TP, Lashinger ESR, Gordon E, Evans L, Misajet BA, DeMarini DJ, Nation JH, Casillas LN, Marquis RW, Votta BJ, Sheardown SA, Xu X, Brooks DP, Laping NJ, Westfall TD (2008) N-((1S)-1-{[4-((2S)-2-{[(2,4-Dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a Novel and Potent Transient Receptor Potential Vanilloid 4 Channel Agonist Induces Urinary Bladder Contraction and Hyperactivity: Part I. J Pharmacol Exp Ther 326:432–442

    CAS  PubMed  Google Scholar 

  110. Gevaert T, Vriens J, Segal A, Everaerts W, Roskams T, Talavera K, Owsianik G, Liedtke W, Daelemans D, Dewachter I, Van Leuven F, Voets T, De Ridder D, Nilius B (2007) Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest 117:3453–3462

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K, Vanden Bosch A, Bouillon R, Nilius B, Carmeliet G (2008) TRPV4-Mediated Calcium Influx Regulates Terminal Differentiation of Osteoclasts. Cell Metab 8:257–265

    CAS  PubMed  Google Scholar 

  112. Rock MJ, Prenen J, Funari VA, Funari TL, Merriman B, Nelson SF, Lachman RS, Wilcox WR, Reyno S, Quadrelli R, Vaglio A, Owsianik G, Janssens A, Voets T, Ikegawa S, Nagai T, Rimoin DL, Nilius B, Cohn DH (2008) Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet 40:999–1003

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Deng HX, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, Yau HJ, Yang Y, Zhai H, Siddique N, Hedley-Whyte ET, DeLong R, Martina M, Dyck PJ, Siddique T (2009) Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42:165–169, advance online publication

    PubMed Central  PubMed  Google Scholar 

  114. Krakow D, Vriens J, Camacho N, Luong P, Deixler H, Funari TL, Bacino CA, Irons MB, Holm IA, Sadler L, Okenfuss EB, Janssens A, Voets T, Rimoin DL, Lachman RS, Nilius B, Cohn DH (2009) Mutations in the Gene Encoding the Calcium-Permeable Ion Channel TRPV4 Produce Spondylometaphyseal Dysplasia, Kozlowski Type and Metatropic Dysplasia. Am J Hum Genet 84:307–315

    PubMed Central  CAS  PubMed  Google Scholar 

  115. uer-Grumbach M, Olschewski A, Papic L, Kremer H, McEntagart ME, Uhrig S, Fischer C, Frohlich E, Balint Z, Tang B, Strohmaier H, Lochmuller H, Schlotter-Weigel B, Senderek J, Krebs A, Dick KJ, Petty R, Longman C, Anderson NE, Padberg GW, Schelhaas HJ, van Ravenswaaij-Arts CMA, Pieber TR, Crosby AH, Guelly C (2010) Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 42:160–164

    Google Scholar 

  116. Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH, Choo SS, Phelps CB, Paudel R, Houlden H, Ludlow CL, Caterina MJ, Gaudet R, Kleta R, Fischbeck KH, Sumner CJ (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42:170–174

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Alvarez DF, King JA, Weber D, Addison E, Liedtke W, Townsley MI (2006) Transient Receptor Potential Vanilloid 4-Mediated Disruption of the Alveolar Septal Barrier. A Novel Mechanism of Acute Lung Injury. Circ Res 99:988–995

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Jian MY, King JA, Al-Mehdi AB, Liedtke W, Townsley MI (2008) High Vascular Pressure-Induced Lung Injury Requires P450 Epoxygenase-Dependent Activation of TRPV4. Am J Respir Cell Mol Biol 38:386–392

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Hamanaka K, Jian MY, Weber DS, Alvarez DF, Townsley MI, Al Mehdi AB, King JA, Liedtke W, Parker JC (2007) TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am J Physiol Lung Cell Mol Physiol 293:L923–L932

    CAS  PubMed  Google Scholar 

  120. Willette RN, Bao W, Nerurkar S, Yue Tl, Doe CP, Stankus G, Turner GH, Ju H, Thomas H, Fishman CE, Sulpizio A, Behm DJ, Hoffman S, Lin Z, Lozinskaya I, Casillas LN, Lin M, Trout REL, Votta BJ, Thorneloe K, Lashinger ESR, Figueroa DJ, Marquis R, Xu X (2008) Systemic Activation of the Transient Receptor Potential Vanilloid Subtype 4 Channel Causes Endothelial Failure and Circulatory Collapse: Part 2. J Pharmacol Exp Ther 326:443–452

    CAS  PubMed  Google Scholar 

  121. Jia Y, Wang X, Varty L, Rizzo CA, Yang R, Correll CC, Phelps PT, Egan RW, Hey JA (2004) Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 287:L272–L278

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Allen McAlexander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

McAlexander, M.A., Taylor-Clark, T. (2011). The Role of Transient Receptor Potential Channels in Respiratory Symptoms and Pathophysiology. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_50

Download citation

Publish with us

Policies and ethics