Skip to main content

Using Plants to Remove Foreign Compounds from Contaminated Water and Soil

  • Chapter
  • First Online:
Organic Xenobiotics and Plants

Abstract

Depending on the physico-chemical properties of the organic pollutant to be removed or detoxified, as well as on the specific plant physiology and biochemistry, different phytotreatments are available to decontaminate water and soils. For example, aquatic macrophytes or even terrestrial plants can be grown under hydroponic conditions or in constructed wetlands to remove many xenobiotic compounds, e.g. sulphonated anthraquinones and azo dyes present in wastewater from the dye and textile industries.

Recent advances have also been made to remediate soils contaminated with hydrophobic compounds like PCBs, highlighting the roles of both plants and rhizospheric microorganisms, and the importance of their interactions. Sequestration of PCB by activated carbon or other adsorbents can be used to improve the phytoremediation of real highly contaminated soils. Activated carbon amendment in combination with mineral fertilizers has been shown to create favourable conditions for the development of soil microorganisms and plants. These examples aim to illustrate the potential of plants for the rhizofiltration, phytoaccumulation and phytodegradation of xenobiotics, as well as their ability to cooperate with bacteria (phytostimulation, rhizospheric interactions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abira MA, van Bruggen JJA, Denny P (2005) Potential of a tropical subsurface constructed wetland to remove phenol from pre-treated pulp and papermill CD wastewater. Water Sci Technol 51:173–176

    PubMed  CAS  Google Scholar 

  • Ahlström L-H, Eskilsson CS, Björklund E (2005) Determination of banned azo dyes in consumer goods. Trends Anal Chem 24:49–56

    Article  CAS  Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresource Technol 79:273–276

    Article  CAS  Google Scholar 

  • Allen D (2002) Evaluating environmental fate: approaches based on chemical structure. In: Allen D, Shonnard D (eds) Green Engineering-environmental conscious design of chemical processes. Prentice-Hall, New Jersey, pp 93–138

    Google Scholar 

  • Araujo BS, Charlwood BV, Pletsch M (2002) Tolerance and metabolism of phenol and chloro derivatives by hairy root cultures of Daucus carota L. Environ Pollut 117:329–335

    Article  PubMed  Google Scholar 

  • Arrieta-Baez D, Roman R, Vazquez-Duhalt R, Jimenez-Estrada M (2002) Peroxidase-mediated transformation of hydroxy-9, 10-anthraquinones. Phytochemistry 60:567–572

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Aubert S, Schwitzguébel JP (2002) Separation of sulphonated anthraquinones in various matrices by capillary electrophoresis. Chromatographia 56:693–697

    Article  CAS  Google Scholar 

  • Aubert S, Schwitzguébel JP (2004) Screening of plant species for the phytotreatment of wastewater containing sulphonated anthraquinones. Water Res 38:3569–3575

    Article  PubMed  CAS  Google Scholar 

  • Azevedo A, Martins V, Prazeres D, Vojinovic V, Cabral J, Fonseca L (2003) Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol Annu Rev 9:199–247

    Article  PubMed  CAS  Google Scholar 

  • Bakker DJ, De Vries W, Van de Plassche EJ, Van Pul WAJ (2000) Manual for performing risk assessments for persistent organic pollutants in aquatic ecosystems. Guidelines for critical limits, calculation methods and input data, p 90. TNO-report, TNO-MEP – R 98/376

    Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: a review. Bioresource Technol 58:217–227

    Article  CAS  Google Scholar 

  • Bandara J, Morrison C, Kiwi J, Pulgarin C, Peringer P (1996) Degradation/decoloration of concentrated solutions of Orange II.Kinetics and quantum yield for sunlight induced reactions via Fenton type reagents. J Photoch Photobio A 99:57–66

    Article  CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  PubMed  CAS  Google Scholar 

  • Baratto C, Faglia G, Pardo M, Vezzoli M, Boarino L, Maffei M, Bossi S, Sberveglieri G (2005) Monitoring plants health in greenhouse for space missions. Sensor Actuat B-Chem 108:278–284

    Article  CAS  Google Scholar 

  • Benkli YE, Can MF, Turan M, Celik MS (2005) Modification of organo-zeolite surface for the removal of reactive azo dyes in fixed-bed reactors. Water Res 39:487–493

    Article  PubMed  CAS  Google Scholar 

  • Biddlestone AJ, Gray KR, Thurairajan K (1991) A botanical approach to the treatment of wastewaters. J Biotechnol 17:209–220

    Article  Google Scholar 

  • Blasco R, Wittich RM, Mallavarapu M, Timmis KN, Pieper DH (1995) From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 270:29229–29235

    Article  PubMed  CAS  Google Scholar 

  • Blumel S, Contzen M, Lutz M, Stolz A, Knackmuss HJ (1998) Isolation of a bacterial strain with the ability to utilize the sulfonated azo compound 4-carboxy-4 ‘-sulfoazobenzene as the sole source of carbon and energy. Appl Environ Microb 64:2315–2317

    CAS  Google Scholar 

  • Brazil GM, Kenefick L, Callanan M, Haro A, de Lorenzo V, Dowling DN et al (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61:946–1952

    Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationships between lipophilicity and the distribution of non-ionized chemicals in barley shoots following uptake by the roots uptake and translocation of non-ionized chemicals by barley. Pestic Sci 13:495–504

    Article  CAS  Google Scholar 

  • Bulc TG, Ojstrsek A (2008) The use of constructed wetland for dye-rich textile wastewater treatment. J Hazard Mater 155:76–82

    Article  PubMed  CAS  Google Scholar 

  • Burgess RM, Ryba SA, Cantwell MG, Gundersen GL, Tyen R (2006) Interaction of planar and nonplanar organic contaminants with coal fly ash: effects of polar and nonpolar solvent solutions. Environ Toxicol Chem 25:2028–2037

    Article  PubMed  CAS  Google Scholar 

  • Burken JG (2003) Uptake and metabolism of organic compounds: green liver model. In: McCutcheon S, Schnoor JL (eds) Phytoremediation (Transformation and control of contaminants). Wyley & Sons, Inc, Hoboken, New Jersey, p 69

    Google Scholar 

  • Campanella BF, Bock C, Schroeder P (2002) Phytoremediation to increase the degradation of PCBs and PCDD/Fs - Potential and limitations. Environ Sci Pollut Res 9:73–85

    Article  CAS  Google Scholar 

  • Carias C, Novais JM, Martins-Dias S (2007) Phragmites australis peroxidases role in the degradation of an azo dye. Water Sci Technol 56:263–269

    Article  PubMed  CAS  Google Scholar 

  • Carias C, Novais JM, Martins-Dias S (2008) Are Phragmites australis enzymes involved in the degradation of the textile azo dye acid orange 7? Bioresource Technol 99:243–251

    Article  CAS  Google Scholar 

  • Chapman PM (2007) Determining when contamination is pollution – Weight of evidence determinations for sediments and effluents. Environ Int 33:492–501

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry Q, Schröder P, Werck-Reichhart D, Grajek W, Marecik R (2002) Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environ Sci Pollut Res 9:4–17

    Article  CAS  Google Scholar 

  • Chekol T, Vough LR, Chaney RL (2004) Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ Int 30:799–804

    Article  PubMed  CAS  Google Scholar 

  • Chen YQ, Adam A, Toure O, Dutta SK (2005) Molecular evidence of genetic modification of Sinorhizobium meliloti: enhanced PCB bioremediation. J Ind Microbiol Biotechnol 32:561–566

    Article  PubMed  CAS  Google Scholar 

  • Chu WK, Wong MH, Zhang J (2006) Accumulation, distribution and transformation of DDT and PCBs by Phragmites australis and Oryza sativa L.: II. Enzyme study. Environ Geochem Health 28:169–181

    Article  PubMed  CAS  Google Scholar 

  • Claus H, Faber G, König H (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol 59:672–678

    Article  PubMed  CAS  Google Scholar 

  • Coleman JOD, Blake-Kalff MMA, Davies TGE (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trend Plant Sci 2:144–151

    Article  Google Scholar 

  • Conesa A, Punt P, Hondel C (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93:143–158

    Article  PubMed  CAS  Google Scholar 

  • Cook AM, Laue H, Junker F (1999) Microbial desulfonation. FEMS Microbiol Rev 22:399–419

    Article  Google Scholar 

  • Coughlin MF, Kinkle BK, Bishop PL (2002) Degradation of acid orange 7 in an aerobic biofilm. Chemosphere 46:11–19

    Article  PubMed  CAS  Google Scholar 

  • Davies TH, Cottingham PD (1994) The use of constructed wetlands for treating industrial effluents (textile dyes). Water Sci Technol 29:227–232

    CAS  Google Scholar 

  • Davies LC, Carias CC, Novais JM, Martins-Dias S (2005) Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feeding constructed wetland. Ecol Eng 25:594–605

    Article  Google Scholar 

  • Davies LC, Pedro IS, Novais JM, Martins-Dias S (2006) Aerobic degradation of acid orange 7 in a vertical-flow constructed wetland. Water Res 40:2055–2063

    Article  PubMed  CAS  Google Scholar 

  • Davies LC, Vacas A, Novais JM, Freire FG, Martins-Dias S (2007) Vertical flow constructed wetland for textile effluent treatment. Water Sci Technol 55:127–134

    PubMed  CAS  Google Scholar 

  • Davies LC, Cabrita GJM, Ferreira RA, Carias CC, Novais JM, Martins-Dias S (2009) Integrated study of the role of Phragmites australis in azo-dye treatment in a constructed wetland: from pilot to molecular scale. Ecol Eng 35:961–970

    Article  Google Scholar 

  • De Carcer DA, Martin M, Mackova M, Macek T, Karlson U, Rivilla R (2007) The introduction of genetically modified microorganisms designed for rhizoremediation induces changes on native bacteria in the rhizosphere but not in the surrounding soil. ISME J 1:215–223

    Article  PubMed  CAS  Google Scholar 

  • Demirezer LO, Kuruüzüm-Uz A, Bergere I, Schiewe HJ, Zeeck A (2001) The structures of antioxidant and cytotoxic agents from natural source: anthraquinones and tannins from roots of Rumex patientia. Phytochemistry 58:1213–1217

    Article  PubMed  CAS  Google Scholar 

  • Donlagic J, Levec J (1998) Comparison of catalyzed and noncatalyzed oxidation of azo dye and effect on biodegradability. Environ Sci Technol 32:1294–1302

    Article  CAS  Google Scholar 

  • Doran P (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60–76

    Article  PubMed  CAS  Google Scholar 

  • Duc R, Vanek T, Soudek P, Schwitzguébel JP (1999) Accumulation and transformation of sulfonated aromatic compounds by rhubarb cells (Rheum palmatum). Int J Phytorem 1:255–271

    Article  CAS  Google Scholar 

  • Edwards R, Dixon D (2003) Metabolism of natural and xenobiotic substrates by plant glutathione S-transferase superfamily. In: Sandermann H (ed) Molecular ecotoxicology of plants. Berlin/Heidelberg/New York, Springer-Verlag, pp 17–50

    Google Scholar 

  • Engloner AI (2009) Structure, growth dynamics and biomass of reed (Phragmites australis) – A review. Flora 204:331–346

    Google Scholar 

  • Franciscon E, Zille A, Fantinatti-Garbiggini F, Silva IS, Cavaco-Paulo A, Durrant LR (2009) Microaerophilic-aerobic sequential decolourization/biodegradation of textile dyes by a facultative Klebsiella sp. strain VN-31. Process Biochem 44:446–452

    Article  CAS  Google Scholar 

  • Furukawa K (2006) Oxygenases and dehalogenases: molecular approaches to efficient degradation of chlorinated environmental pollutants: review. Biosci Biotechnol Biochem 70:2335–2348

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K, Fujita M (1993) Advanced treatment and food production by hydroponic type wastewater treatment plant. Water Sci Technol 28:219–228

    CAS  Google Scholar 

  • Gerhardt K, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Tech 35:339–354

    Article  CAS  Google Scholar 

  • Gordeziani M, Khatisashvili G, Ananiashvili T, Varazashvili T, Kurashvili M, Kvesitadze G, Tkhelidze P (1999) Energetic significance of plant monooxygenase individual components participating in xenobiotic degradation. Int Biodeterior Biodegr 44:49–54

    Article  CAS  Google Scholar 

  • Gottlieb A, Shaw C, Smith A, Wheatley A, Forsythe S (2003) The toxicity of textile reactive azo dyes after hydrolysis and decolourisation. J Biotechnol 101:49–56

    Article  PubMed  CAS  Google Scholar 

  • Gregory P (1994) Dyestuff. In: Alan Heaton (ed) The Chemical Industry, Blackie Academic & Professional. Alden Press, Oxford, pp 143–188

    Google Scholar 

  • Greim H, Ahlers J, Bias R, Broecker B, Hollander H, Gelbke H, Klimisch H, Mangelsdorf I, Paetz A, Schön N, Stropp G, Vogel R, Weber C, Ziegler-Skylakakis K, Bayer E (1994) Toxicity and ecotoxicity of sulfonic acids. Structure activity relationship. Chemosphere 28:2203–2236

    Article  CAS  Google Scholar 

  • Haberl R, Grego S, Langergraber G, Kadlec R, Cicalini AR, Martins-Dias S, Novais JM, Aubert S, Gerth A, Thomas H, Hebner A (2003) Constructed wetlands for the treatment of organic pollutants. J Soils Sediments 3:109–124

    Article  CAS  Google Scholar 

  • Hailei W, Ping L, Min P, Zhijun Z, Guangli Y, Guosheng L, Jianming Y (2009) Rapid decolourization of azo dyes by a new isolated higher manganese peroxidase producer: Phanerochaete sp. HSD. Biochem Eng J 46:327–333

    Article  CAS  Google Scholar 

  • Han YS, van der Heijden R, Lefeber AWM, Erkelens C, Verpoorte R (2002) Biosynthesis of anthraquinones in cell cultures of Cinchona “Robusta” proceeds via the methylerythritol 4-phosphate pathway. Phytochemistry 59:45–55

    Article  PubMed  CAS  Google Scholar 

  • Harmer C, Bishop P (1992) Transformation of an azo dye AO-7 by wastewater biofilm. Water Sci Technol 26:627–636

    CAS  Google Scholar 

  • Harvey PJ, Campanella BF, Castro PM, Harms H, Lichtfouse E, Schäffner, Smrcek S, Werck-Reichhart D (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res 9:29–47

    Article  CAS  Google Scholar 

  • Havaux M (2003) Spontaneous and thermoinduced photon emission: new methods to detect and quantify oxidative stress in plants. Trends Plant Sci 8:409–413

    Article  PubMed  CAS  Google Scholar 

  • Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microb 64:2788–2793

    CAS  Google Scholar 

  • Inthorn D, Singhtho S, Thiravetyan P, Khan E (2004) Decolorization of basic, direct and reactive dyes by pre-treated narrow-leaved cattail (Typha angustifolia Linn.). Bioresource Technol 94:299–306

    Article  CAS  Google Scholar 

  • Isin EM, Guengerich FP (2007) Complex reactions catalyzed by cytochrome P450 enzymes. Biochim Biophys Acta 1770:314–329

    PubMed  CAS  Google Scholar 

  • Jing W, Zhongzhi Z, Youming S, Wei H, Feng H, Song H (2008) Phytoremediation of petroleum polluted soil. Petrol Sci 5:167–171

    Article  CAS  Google Scholar 

  • Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213:164–174

    Article  PubMed  CAS  Google Scholar 

  • Khan AA, Husain Q (2007) Potential of plant polyphenol oxidases in the decolorization and removal of textile and non-textile dyes. J Environ Sci 4:396–402

    Google Scholar 

  • Khouri HE, Ibrahim RK (1987) Purification and some properties of five anthraquinone-specific glucosyltransferases from Cinchona succirubra cell suspension culture. Phytochemistry 26:2531–2535

    Article  CAS  Google Scholar 

  • Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microb 65:1029–1035

    CAS  Google Scholar 

  • Kochhar S, Kochhar VK (2005) Expression of antioxidant enzymes and heat shock proteins in relation to combined stress of cadmium and heat in Vigna mungo seedlings. Plant Sci 168:921–929

    Article  CAS  Google Scholar 

  • Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotech 16:133–141

    Article  PubMed  CAS  Google Scholar 

  • Kucerova P, Mackova M, Chroma L, Burkhard J, Triska J, Demnerova K, Macek T (2000) Metabolism of polychlorinated biphenyls by Solanum nigrum hairy root clone SNC-9O and analysis of transformation products. Plant Soil 225:109–115

    Article  CAS  Google Scholar 

  • Leigh MB, Prouzova P, Mackova M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72(4):2331–2342

    Article  PubMed  CAS  Google Scholar 

  • Lim EK, Doucet CJ, Li Y, Elias L, Worrall SSP, Ross J, Bowles DJ (2002) The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem 277:586–592

    Article  PubMed  CAS  Google Scholar 

  • Lucarelli L, Nadtochenko V, Kiwi J (2000) Environmental photochemistry: quantitative adsorption and FTIR studies during TiO2-photocatalyzed degradation of orange II. Langmuir 16:1102–1108

    Article  CAS  Google Scholar 

  • Luo W, D’Angelo EM, Coyne MS (2007) Plant secondary metabolites, biphenyl, and hydroxypropyl-cyclodextrin effects on aerobic polychlorinated biphenyl removal and microbial community structure in soils. Soil Biol Biochem 39:735–743

    Article  CAS  Google Scholar 

  • Ma XM, Richter AR, Albers S, Burken JG (2004) Phytoremediation of MTBE with hybrid poplar trees. Int J Phytorem 6:157–167

    Article  CAS  Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  PubMed  CAS  Google Scholar 

  • Mackova M, Barriault D, Francova K, Sylvestre M, Moder M,Vrchotova B, Lovecka P, Najmanova J, Demnerova K, Novakova M, Rezek J, Macek T (2006) Phytoremediation of polychlorinated biphenyls, pp 143–167. In: Mackova M et al. (eds) Phytoremediation and rhizoremediation, p 355. Springer, The Netherlands

    Chapter  Google Scholar 

  • Mackova M, Vrchotova B, Francova K, Sylvestre M, Tomaniova M, Lovecka P, Demnerova K, Macek T (2007) Biotransformation of PCBs by plants and bacteria - consequences of plant-microbe interactions. Eur J Soil Biol 43:233–241

    Article  CAS  Google Scholar 

  • Mackova M, Prouzova P, Stursa P, Ryslava E, Uhlik O, Beranova K, Rezek J, Kurzawova V, Demnerova K, Macek T (2009) Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environ Sci Pollut Res 16:817–829

    Article  CAS  Google Scholar 

  • Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007) Chemically catalyzed uptake of 2, 4, 6-trinitrotoluene by Vetiveria zizanioides. Environ Pollut 148:101–106

    Article  PubMed  CAS  Google Scholar 

  • Manu B, Chaudhari S (2002) Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresource Technol 82:225–231

    Article  CAS  Google Scholar 

  • Matamoros V, Bayona JM (2006) Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environ Sci Technol 40:5811–5816

    Article  PubMed  CAS  Google Scholar 

  • Matsuda H, Morikawa T, Toguchida I, Park JY, Harima S, Yoshikawa M (2001) Antioxidant constituents from rhubarb: structural requirements of stilbenes for the activity and structures of two new anthraquinone glucosides. Bioorg Med Chem 9:41–50

    Article  PubMed  CAS  Google Scholar 

  • Mbuligwe S (2005) Comparative treatment of dye-rich wastewater in engineered wetland systems (EWSs) vegetated with different plants. Water Res 39:271–280

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon S, Schnoor J (2003) Overview of phytotransformation and control of wastes. In: McCutcheon S, Schnoor JL (eds) Phytoremediation (Transformation and control of contaminants). Wiley, Hoboken, NJ, pp 3–58

    Google Scholar 

  • McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87

    Article  PubMed  CAS  Google Scholar 

  • Melgoza R, Cruz A, Buitrón G (2004) Anaerobic/aerobic treatment of colorants present in textile effluents. Water Sci Technol 50:149–155

    PubMed  CAS  Google Scholar 

  • Méndez-Paz D, Omil F, Lema JM (2005) Anaerobic treatment of azo dye Acid Orange 7 under fed-batch and continuous conditions. Water Res 39:771–778

    Article  PubMed  CAS  Google Scholar 

  • Messner B, Thulke O, Schäffner AR (2003) Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates. Planta 217:138–146

    PubMed  CAS  Google Scholar 

  • Mitsch WJ, Wise KM (1998) Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. Water Res 32:1888–1900

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 17:405–410

    Article  Google Scholar 

  • Mittler R, Zilinskas B (2003) Activated oxygen species in multiple stress situations and protective systems. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin/Heidelberg/New York, pp 51–73

    Google Scholar 

  • Mohammadi M, Chalavi V, Novakova-Sura M, Laliberte JF, Sylvestre M (2007) Expression of bacterial biphenyl-chlorobiphenyl dioxygenase genes in tobacco plants. Biotechnol Bioeng 97:496–505

    Article  PubMed  CAS  Google Scholar 

  • Morant M, Bak S, Möller BL, Werck-Reichhart D (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 14:151–162

    Article  PubMed  CAS  Google Scholar 

  • Morimoto M, Tanimoto SA, Komai K (2002) Antifeedant activity of an anthraquinone aldehyde in Galium aparine L. against Spodoptera litura F. Phytochemistry 60:63–166

    Article  Google Scholar 

  • Nachiyar CV, Rajakumar GS (2005) Purification and characterization of an oxygen insensitive azoreductase from Pseudomonas aeruginosa. Enzyme Microb Technol 36:503–509

    Article  CAS  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Phys 132:146–153

    Article  CAS  Google Scholar 

  • Neamtu M, Yediler A, Siminiceanu I, Macoveanu M, Kettrup A (2004) Decolorization of disperse red 354 azo dye in water by several oxidation processes - a comparative study. Dyes Pigm 60:61–68

    Article  CAS  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  PubMed  CAS  Google Scholar 

  • Nigam P, Armour G, Banat IM, Singh D, Marchant R (2000) Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresource Technol 72:219–226

    Article  CAS  Google Scholar 

  • Nogueira F, De Rosa V, Menossi M, Ulian E, Arruda P (2003) RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol 132:1811–1824

    Article  PubMed  CAS  Google Scholar 

  • Nyanhongo GS, Gomes J, Gübitz GM, Zvauya R, Read J, Steiner W (2002) Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Res 36:1449–1456

    Article  PubMed  CAS  Google Scholar 

  • Ojstrsek A, Fakin D, Vrhovsek D (2007) Residual dyebath purification using a system of constructed wetland. Dyes Pigm 74:503–507

    Article  CAS  Google Scholar 

  • O’Neill C, Hawkes F, Hawkes D, Lourenço N, Pinheiro HM, Delee W (1999) Colour in textile effluents – sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018

    Article  Google Scholar 

  • Padmavathy S, Sandhya S, Swaminathan K, Subrahmanyam YV, Chakrabarti T, Kaul SN (2003) Aerobic decolorisation of reactive azo dyes in presence of various cosubtrates. Chem Biochem Engin Quarter 17:147–151

    CAS  Google Scholar 

  • Page V, Schwitzguébel JP (2009a) The role of cytochromes P450 and peroxidases in the detoxification of sulphonated anthraquinones by rhubarb and rumex plants cultivated under hydroponic conditions. Environ Sci Pollut Res 16:805–816

    Article  CAS  Google Scholar 

  • Page V, Schwitzguébel JP (2009b) Metabolism of sulphonated anthraquinones in rhubarb, maize and celery: the role of cytochromes P450 and peroxidases. Plant Cell Rep 28:1725–1735

    Article  PubMed  CAS  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  PubMed  CAS  Google Scholar 

  • Patil P, Desai N, Govindwar S, Jadhav JP, Bapat V (2009) Degradation analysis of Reactive Red 198 by hairy roots of Tagetes patula L. (Marigold) Planta 230:725–735

    Article  PubMed  CAS  Google Scholar 

  • Pflugmacher S, Sandermann H (1998) Taxonomic distribution of plant glucosyltransferases acting on xenobiotics. Phytochemistry 49:507–511

    Article  CAS  Google Scholar 

  • Pflugmacher S, Wiencke C, Sandermann H (1999) Activity of phase I and phase II detoxication enzymes in Antarctic and Arctic macroalgae. Mar Environ Res 48:23–36

    Article  CAS  Google Scholar 

  • Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270

    Article  PubMed  CAS  Google Scholar 

  • Rabbani M, Maruyama K, Abe H, Khan M, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  PubMed  CAS  Google Scholar 

  • Rauf MA, Ashraf SS (2009) Review Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 151:10–18

    Article  CAS  Google Scholar 

  • Razzaque MM, Grathwohl P (2008) Predicting organic carbon-water partitioning of hydrophobic organic chemicals in soils and sediments based on water solubility. Water Res 42:3775–3780

    Article  PubMed  CAS  Google Scholar 

  • Rein A, Fernqvist MM, Mayer P, Trapp S, Bittens M, Karlson UG (2007) Degradation of PCB congeners by bacterial strains. Appl Microbiol Biotechnol 77:469–481

    Article  PubMed  CAS  Google Scholar 

  • Reinhard M, Drefahl A (1999) Handbook for estimating physicochemical properties of organic compounds. Wiley, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, pp 148–176

    Google Scholar 

  • Rezek J, Macek T, Mackova M, Triska J (2007) Plant metabolites of polychlorinated biphenyls in hairy root culture of black nightshade Solanum nigrum SNC-90. Chemosphere 69:1221–1227

    Article  PubMed  CAS  Google Scholar 

  • Riediker S, Suter MJF, Giger W (2000) Benzene and naphthalenesulfonates in leachates and plumes of landfills. Water Res 34:2069–2079

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technol 77:247–255

    Article  CAS  Google Scholar 

  • Ryslava E, Krejcik Z, Macek T, Novakova M, Denmerova K, Mackova M (2003) Study of PCB degradation in real contaminated soil. Fres Enviro Bull 12:296–301

    CAS  Google Scholar 

  • Sandermann H (2004) Molecular ecotoxicology of plants. Trends Plant Sci 9:406–413

    Article  PubMed  CAS  Google Scholar 

  • Sanroman MA, Pazos M, Ricart MT, Cameselle C (2004) Electrochemical decolourisation of structurally different dyes. Chemosphere 57:233–239

    Article  PubMed  CAS  Google Scholar 

  • Scheeren CW, Paniz JNG, Martins AF (2002) Comparison of advanced processes on the oxidation of acid orange 7 dye. J Environ Sci Heal A 37:1253–1261

    Article  CAS  Google Scholar 

  • Scholes LNL, Shutes RBE, Revitt DM, Purchase D, Forshaw M (1999) The removal of urban pollutants by constructed wetlands during wet weather. Water Sci Technol 40:333–340

    Article  CAS  Google Scholar 

  • Schröder P (2007) Exploiting plant metabolism for the phytoremediation of organic xenobiotics. In: Willey N (ed) Phytoremediation (Methods and reviews). Humana Press, Totowa, NJ, pp 251–289

    Google Scholar 

  • Schröder P, Scheer C, Diekmann F, Stampfl A (2007) How plants cope with foreign compounds. Environ Sci Pollut Res 14:114–122

    Article  CAS  Google Scholar 

  • Schröder P, Daubner D, Maier H, Neustifter J, Debus R (2008) Phytoremediation of organic xenobiotics – Glutathione dependent detoxification in Phragmites plants from European treatment sites. Bioresource Technol 99:7183–7191

    Article  CAS  Google Scholar 

  • Schwitzguébel JP, Porta A (2003) Outlook and expected developments. In: Vanek T, Schwitzguébel JP (eds) Phytoremediation inventory, COST Action 837 View. UOCHB AVCR, Prague, pp 79–88

    Google Scholar 

  • Schwitzguébel JP, Vanek T (2003) Fundamental advances in phytoremediation for xenobiotic chemicals. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, NJ, pp 123–157

    Google Scholar 

  • Schwitzguébel JP, Aubert S, Grosse W, Laturnus F (2002) Sulphonated aromatic pollutants – Limits of microbial degradability and potential of phytoremediation. Environ Sci Pollut Res 9:62–72

    Article  Google Scholar 

  • Schwitzguébel JP, Braillard S, Page V, Aubert S (2008) Accumulation and transformation of sulfonated aromatic compounds by higher plants – toward the phytotreatment of wastewater from dye and textile industries. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, New York, pp 335–353

    Chapter  Google Scholar 

  • Schwitzguébel JP, Kumpiene J, Comino E, Vanek T (2009) From green to clean: a promising and sustainable approach towards environmental remediation and human health for the 21st century. Agrochimica 53:209–237

    Google Scholar 

  • Shaffiqu TS, Roy JJ, Nair RA, Abraham TE (2002) Degradation of textile dyes mediated by plant peroxidases. Appl Biochem Biotechnol 102–103:315–326

    Article  PubMed  Google Scholar 

  • Siciliano SD, Germida JJ (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79

    Article  CAS  Google Scholar 

  • Silva G, Novais JM, Martins-Dias S (2003) Landfill leachate treatment in a vertical flow constructed wetland: nitrification and COD removal at pilot scale. In: Dias V, Vymazal J (eds) 1st international seminar on the use of aquatic macrophytes for wastewater treatment in constructed wetlands. Fundação Calouste Gulbenkian, Lisboa, Portugal, p 629

    Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130

    Article  PubMed  CAS  Google Scholar 

  • Smith KE, Schwab AR, Banks MK (2007) Phytoremediation of polychlorinated biphenyl (PCB)-contaminated sediment: a greenhouse feasibility study. J Environ Qual 36:239–244

    Article  PubMed  CAS  Google Scholar 

  • Stiborova M, Schmeiser HH, Frei E (2000) Oxidation of xenobiotics by plant microsomes, a reconstituted cytochrome P450 system and peroxidase: a comparative study. Phytochemistry 54:353–362

    Article  PubMed  CAS  Google Scholar 

  • Susarla S, Medina V, McCutcheon S (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Taguchi G, Nakamura M, Hayashida N, Okazaki M (2003) Exogenously added naphthols induce three glucosyltransferases, and are accumulated as glucosides in tobacco cells. Plant Sci 164:231–240

    Article  CAS  Google Scholar 

  • Tan NCG, Lettinga G, Field JA (1999) Reduction of the azo dye Mordant Orange 1 by methanogenic granular sludge exposed to oxygen. Bioresource Technol 67:35–42

    Article  CAS  Google Scholar 

  • Van der Plaas LHW, Hagendoorn MJM, Jamar DCL (1998) Anthraquinone glycosylation and hydrolysis in Morinda citrifolia cell suspensions: regulation and function. J Plant Physiol 152:235–241

    Google Scholar 

  • Vandevivere PC, Bianchi R, Verstraete W (1998) Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem Technol Biotechnol 72:289–302

    Article  CAS  Google Scholar 

  • Vangronsveld J, van der Lelie D (2003) The use of alternative techniques for remediation of polluted sites and groundwater in Flanders: plant-based strategies. J Soils Sediments 3:250–251

    Article  CAS  Google Scholar 

  • Vanhulle S, Enaud E, Trovaslet M, Nouaimeh N, Bols CM, Keshavarz T, Tron T, Sannia G, Corbisier AM (2007) Overlap of laccases/cellobiose dehydrogenase activities during the decolourisation of anthraquinone dyes with close chemical structures by Pycnoporus strains. Enzyme Microb Tech 40:1723–1731

    Article  CAS  Google Scholar 

  • Vasilyeva GK, Strijakova ER (2007) Bioremediation of soil and sediments contaminated with polychlorinated biphenyls. Microbiology 74:725–741

    Google Scholar 

  • Vasilyeva GK, Strijakova ER, Shea PJ (2006) Use of activated carbon for soil bioremediation. In: Twardowska I, Allen HE, Haggblom MH (eds) Viable methods of soil and water pollution monitoring, protection and remediation, Serial NATO Collection. Springer, Netherlands, pp 309–327

    Chapter  Google Scholar 

  • Vasilyeva GK, Strijakova ER, Nicolaeva SN, Lebedev AT, Shea PJ (2010) Dynamics of PCB removal and detoxification in historically contaminated soils amended with activated carbon. Environ Pollut 158:770–777

    Article  PubMed  CAS  Google Scholar 

  • Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–259

    Article  PubMed  CAS  Google Scholar 

  • Villacieros M, Whelan C, Mackova M, Molgaard J, Sanchez-Contreras M, Lloret J, de Carcer DA, Oruezabal RI, Bolanos L, Macek T, Karlson U, Dowling DN, Martin M, Rivilla R (2005) Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71:2687–2694

    Article  PubMed  CAS  Google Scholar 

  • Wallace S, Kadlec R (2005) BTEX degradation in a cold-climate wetland system. Water Sci Technol 51:165–171

    PubMed  CAS  Google Scholar 

  • Weyens N, Taghavi S, Barac T, van der Lelie D, Boulet J, Artois T, Carleer R, Vangronsveld J (2009) Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE. Environ Sci Pollut Res 16:830–843

    Article  CAS  Google Scholar 

  • Werck-Reichhart D, Hehn A, Didierjean L (2000) Cytochromes P450 for engineering herbicide resistance. Trends Plant Sci 5:116–123

    Article  PubMed  CAS  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Article  PubMed  CAS  Google Scholar 

  • White JC, Parrish ZD, Isleyen M, Gent MPN, Iannucci-Berger W, Eitzer BD, Kelsey JW, Mattina MI (2006) Influence of citric acid amendments on the availability of weathered PCBs to plant and earthworm species. Int J Phytorem 8:63–79

    Article  CAS  Google Scholar 

  • Wiegel J, Wu QZ (2000) Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol Ecol 32:1–15

    Article  PubMed  CAS  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  PubMed  CAS  Google Scholar 

  • Wojnárovits L, Takács E (2008) Irradiation treatment of azo dye containing wastewater: an overview. Radiat Phys Chem 77:225–244

    Article  CAS  Google Scholar 

  • Whitfield Aslund ML, Zeeb BA, Rutter A, Reimer KJ (2007) In situ phytoextraction of polychlorinated biphenyl - (PCB) contaminated soil. Sci Total Environ 374:1–12

    Article  PubMed  CAS  Google Scholar 

  • Zeeb BA, Amphlet JS, Rutter A, Reimer KJ (2006) Potential for phytoremediation of polychlorinated biphenyl-(PCB)-contaminated soil. Int J Phytorem 8:199–221

    Article  CAS  Google Scholar 

  • Zheng Z, Shetty K (2000) Azo dye mediated regulation of total phenolics and peroxidase activity in Thyme (Thymus vulgaris L.) and Rosemary (Rosmarinus officinalis L.) clonal lines. J Agric Food Chem 48:932–937

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Pinkham J, Shetty K (1998) Identification of polymeric dye-tolerant Oregano (Origanum vulgare) clonal lines by quantifying total phenolics and peroxidase activity. J Agric Food Chem 46:4441–4446

    Article  CAS  Google Scholar 

  • Zhu D, Pignatello JJ (2005) Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ Sci Technol 39:2033–2041

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Schwitzguébel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schwitzguébel, JP., Page, V., Martins-Dias, S., Davies, L.C., Vasilyeva, G., Strijakova, E. (2011). Using Plants to Remove Foreign Compounds from Contaminated Water and Soil. In: Schröder, P., Collins, C. (eds) Organic Xenobiotics and Plants. Plant Ecophysiology, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9852-8_8

Download citation

Publish with us

Policies and ethics