Skip to main content

Solution-Precipitation Creep – Modeling and Extended FE Implementation

  • Conference paper
  • First Online:
IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 21))

Abstract

The topic of this contribution is the mechanical modeling of solutionprecipitation creep, a process occurring in polycrystalline and granular structures under specific temperature and pressure conditions. The model presented has a variational structure and is based on a novel proposal for the dissipation while the elastic energy is kept in the standard form. The assumed dissipation term depends on two kinds of velocities characteristic for the process: velocity of material transfer and velocity of inelastic deformations, both manifesting themselves on the boundaries of the grains. For the numerical implementation, the standard finite element program FEAP together with the pre- and postprocessing software package GID are used. The simulations are illustrated by two examples, a polycrystal with regular hexagonal microstructure and a polycrystal with random microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carstensen, C., Hackl, K. and Mielke, A., Nonconvex potentials and microstructures in finite-strain plasticity, Proc. Royal Soc. Lond. Ser. A 458, 2002, 299–317.

    Article  MATH  MathSciNet  Google Scholar 

  2. Coble, R.L., A model for boundary diffusion controlled creep in polycrystalline materials, J. Appl. Phys.34, 1963, 1679–1682.

    Article  Google Scholar 

  3. Cooper, R.F., Kohlstedt, D.L. and Chyung, K., Solution-precipitation enhanced creep in solid liquid aggregates which display a non-zero dihedral angle, Acta Metallurgica 37, 1989, 1759–771.

    Article  Google Scholar 

  4. Elliott, D., Deformation paths in structural geology, Geol. Soc. America. Bull.83, 1972, 2621–2638.

    Article  Google Scholar 

  5. Elliott, D., Diffusion flow laws in metamorphic rocks, Geol. Soc. America. Bull.84, 1973, 2645–2664.

    Article  Google Scholar 

  6. Ford, J.M., Wheeler, J. and Movchan, A.B., Computer simulation of grain boundary creep, Acta Materialia 50, 2002, 3941–3955.

    Article  Google Scholar 

  7. Ford, J.M., Ford, N.J. and Wheeler, J., Simulation of grain boundary diffusion creep: Analysis of some new numerical techniques, Proc. Royal Soc. Lond. Ser. A 460, 2004, 2395–2413.

    Article  MATH  MathSciNet  Google Scholar 

  8. Hackl, K. and Fischer, F.D., On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials, Proc. Royal Soc. Ser. A 464, 2007, 117–132.

    Article  MathSciNet  Google Scholar 

  9. Hackl, K. and Ilic, S., Solution-precipitation creep – Continuum mechanical formulation and micromechanical modelling, Arch. Appl. Mech.74, 2005, 773–779.

    Article  MATH  Google Scholar 

  10. Hackl, K., Mielke, A. and Mittenhuber, D., Dissipation distances in multiplicative elastoplasticity, in Analysis and Simulation of Multifield Problems, W. Wendland and M. Efendiev (Eds.), Springer-Verlag, 2003, pp. 87–100.

    Google Scholar 

  11. Herring, C., Diffusional viscosity of a polycrystalline solid, J. Appl. Phys.21, 1950, 245–278.

    Google Scholar 

  12. Hughes, T.J.R., The Finite Element Method, Prentice Hall, Englewood Cliffs, NJ, 1987.

    MATH  Google Scholar 

  13. Ilic, S. and Hackl, K., Solution-precipitation creep – Micromechanical modelling and numerical results, PAMM 5, 2005, 277–278.

    Article  Google Scholar 

  14. Ilic, S., Application of the multiscale FEM to the modeling of composite materials, PhD Thesis, Ruhr University Bochum, 2008.

    Google Scholar 

  15. Mielke, A., Energetic formulation of multiplicative elasto-plasticity using dissipation distances, Cont. Mech.15, 2003, 351–382.

    Article  MATH  MathSciNet  Google Scholar 

  16. Mielke, A., Evolution of rate-independent inelasticity with microstructure using relaxation and Young measures, in IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, C. Miehe (Ed.), Kluwer, 2003, pp. 33–44.

    Google Scholar 

  17. Nabarro, F.R.N., Deformation of crystals by the motion of single ions, in Report of a Conference on the Strength of Solids: Phys. Soc. Proc., 1948, pp. 75–90.

    Google Scholar 

  18. Ortiz, M. and Steinier, L., The variational formulation of viscoplastic constitutive updates. Comput. Meth. Appl. Mech. Engrg.171, 1999, 419–444.

    Article  MATH  Google Scholar 

  19. Paterson, M.S., A theory for granular flow accommodated by material transfer via an intergranular fluid, Tectonphysics 245, 1995, 131–151.

    Article  Google Scholar 

  20. Renner, J., Evans, B. and Hirth, G., On the rheologically critical melt fraction, Earth Plan. Sci. Lett.181, 2000, 585–594.

    Article  Google Scholar 

  21. Rösler, J., Harders, H. and Bäker, M., Mechanisches Verhalten der Werksoffe, Teubner, 2006.

    Google Scholar 

  22. Simo, J.C., and Hughes, T.J.R., Computational Inelasticity, Springer Verlag, 1997.

    Google Scholar 

  23. Sorby, H.C., Über Kalkstein-Geschiebe mit Eindrücken, Neues Jahrb. Mineralogie, 1863, 801–807.

    Google Scholar 

  24. Sorby, H.C., On the application of quantitative methods to the study of rocks, Geol. Soc. London Quart. J.61, 1908, 171–233.

    Article  Google Scholar 

  25. Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, Butterworth-Heinemann, 2000.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Ilic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Ilic, S., Hackl, K. (2010). Solution-Precipitation Creep – Modeling and Extended FE Implementation. In: Hackl, K. (eds) IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials. IUTAM Bookseries, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9195-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9195-6_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9194-9

  • Online ISBN: 978-90-481-9195-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics