Skip to main content

Membrane Partitioning: Is Location Everything When It Comes to Endotoxin Recognition?

  • Chapter
  • First Online:
Endotoxins: Structure, Function and Recognition

Part of the book series: Subcellular Biochemistry ((SCBI,volume 53))

Abstract

Lipid rafts are envisaged as islands of highly ordered saturated lipids and cholesterol that are laterally mobile in the plane of the plasma membrane. Lipid rafts are thought to provide a means to explain the spatial segregation of certain signalling pathways emanating from the cell surface. They seem to provide the necessary microenvironment in order for certain specialised signalling events to take place- such as the innate immune recognition. The innate immune system seems to employ germ-lined encoded receptors, called pattern recognition receptors (PRRs) in order to “sense” pathogens. One family of such receptors are the Toll like receptors (TLRs), which are the central “sensing” apparatus of the innate immune system. In recent years, it has become apparent that TLRs are recruited into membrane microdomains in response to ligands and these constitute signalling platforms, which transducer singals that lead to innate immune activation. In this chapter will review all past and current literature concerning recruitment of TLRs into lipid rafts and how this membrane compartmentalization is crucial for innate immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

LBP:

lipopolysaccharide binding protein

LPS:

lipopolysaccharide

LTA:

lipoteichoic acid

MHC:

major histocompatibility complex

NF-kB:

nuclear factor kappa B

PRRs:

pattern recognition receptor

TLR:

Toll like receptor

References

  • Akira, S. Toll-like receptors and innate immunity. AdvImmunol 78 (2001) 1–56.

    CAS  Google Scholar 

  • Alexopoulou, L., Holt, A.C., Medzhitov, R., Flavell, R.A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413 (2001) 732–738.

    Article  PubMed  CAS  Google Scholar 

  • Alexopoulou, L., Thomas, V., Schnare, M., Lobet, Y., Anguita, J., Schoen, R.T., Medzhitov, R., Fikrig, E., Flavell, R.A. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Immunol 8 (2002) 878–884.

    CAS  Google Scholar 

  • Anderson, H.A., Hiltbold, E.M., Roche, P.A. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol 1 (2000) 156–162.

    Article  PubMed  CAS  Google Scholar 

  • Buwitt-Beckmann, U., Heine, H., Wiesmuller, K.H., Jung, G., Brock, R., Akira, S., Ulmer, A.J. Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur J Immunol 35 (2005) 282–289.

    Article  PubMed  CAS  Google Scholar 

  • Byrd, C.A., Bornmann, W., Erdjument-Bromage, H., Tempst, P., Pavletich, N., Rosen, N., Nathan, C.F., Ding, A. Heat shock 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci USA 96 (1999) 5645–5650.

    Article  PubMed  CAS  Google Scholar 

  • Choe, J., Kelker, M.S., Wilson, I.A. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 309 (2005) 581–585.

    Article  PubMed  CAS  Google Scholar 

  • Divanovic, S., Trompette, A., Atabani, S.F., Madan, R., Golenbock, D.T., Visintin, A., Finberg, R.W., Tarakhovsky, A., Vogel, S.N., Belkaid, Y., Kurt-Jones, E.A., Karp, C.L. Negative regulation of Toll-like receptor 4 signalling by the Toll-like receptor homolog RP105. Nat Immunol 6 (2005) 571–578.

    Article  PubMed  CAS  Google Scholar 

  • Gantner, B.N., Simmons, R.M., Canavera, S.J., Akira, S., Underhill, D.M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197 (2003) 1107–1117.

    Article  PubMed  CAS  Google Scholar 

  • Gay, N.J. Gangloff, M., Structure of toll-like receptors. Handb Exp Pharmacol (2008) 181–200.

    Google Scholar 

  • Gay, N.J., Gangloff, M., Weber, A.N. Toll-like receptors as molecular switches. Nat Rev Immunol 6(9) (2006) 693–698.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, D., Kirkland, T.N., Viriyakosol, S., Dziarski, R. CD14 is a cell-activating receptor for bacterial peptidoglycan. J Biol Chem 271 (1996) 23310–23316.

    Article  PubMed  CAS  Google Scholar 

  • Hajishengallis, G., Wang, M., Liang, S., Triantafilou, M., Triantafilou, K. Pathogen induction of CXCR4/TLR2 cross-talk impairs host defense function. Proc Natl Acad Sci USA 105 (2008) 13532–13537.

    Article  PubMed  CAS  Google Scholar 

  • Harder, T., Scheiffele, P., Verkade, P., Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141 (1998) 929–942.

    Article  PubMed  CAS  Google Scholar 

  • Harder, T., Simon, K. Caveolae, DIGs and the dynamics of spingolipid-cholesterol microdomains. Curr Opin Cell Biol 9 (1997) 534–542.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng, J.K., Akira, S., Underhill, D.M., Aderem, A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410 (2001) 1099–1103.

    Article  PubMed  CAS  Google Scholar 

  • Heil, F., Ahmad-Nejad, P., Hemmi, H., Hochrein, H., Ampenberger, F., Gellert, T., Dietrich, H., Lipford, G., Takeda, K., Akira, S., Wagner, H., Bauer, S. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol 33 (2003) 2987–2997.

    Article  PubMed  CAS  Google Scholar 

  • Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H., Bauer, S. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303 (2004) 1526–1529.

    Article  PubMed  CAS  Google Scholar 

  • Heine, H., El-Samalouti, V.T., Notzel, C., Pfeiffer, A., Lentschat, A., Kusumoto, S., Schmitz, G., Hamann, L., Ulmer, A.J. CD55/decay accelerating factor is part of the lipopolysaccharide-induced receptor complex. Eur J Immunol 33 (2003) 1399–1408.

    Article  PubMed  CAS  Google Scholar 

  • Heine, H., Lien, E. Toll-like receptors and their function in innate and adaptive immunity. Int Arch Allergy Immunol 130 (2003) 180–192.

    Article  PubMed  CAS  Google Scholar 

  • Hemni, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., Akira, S. A Toll-like receptor recognises bacterial DNA. Nature 408 (2000) 740–745.

    Article  Google Scholar 

  • Hoebe, K., Georgel, P., Rutschmann, S., Du, X., Mudd, S., Crozat, K., Sovath, S., Shamel, L., Hartung, T., Zahringer, U., Beutler, B. CD36 is a sensor of diacylglycerides. Nature 433 (2005) 523–527.

    Article  PubMed  CAS  Google Scholar 

  • Humphries, H.E., Triantafilou, M., Makepeace, B.L., Heckels, J.E., Triantafilou, K., Christodoulides, M. Activation of human meningeal cells is modulated by lipopolysaccharide (LPS) and non-LPS components of Neisseria meningitidis and is independent of Toll-like receptor (TLR)4 and TLR2 signalling. Cell Microbiol 7 (2005) 415–430.

    Article  PubMed  CAS  Google Scholar 

  • Jin, M.S., Kim, S.E., Heo, J.Y., Lee, M.E., Kim, H.M., Paik, S.G., Lee, H., Lee, J.O. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130 (2007) 1071–1082.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H.M., Park, B.S., Kim, J.I., Kim, S.E., Lee, J., Oh, S.C., Enkhbayar, P., Matsushima, N., Lee, H., Yoo, O.J., Lee, J.O. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130 (2007) 906–917.

    Article  PubMed  CAS  Google Scholar 

  • Latz, E., Schoenemeyer, A., Visintin, A., Fitzgerald, K.A., Monks, B.G., Knetter, C.F., Lien, E., Nilsen, N.J., Espevik, T., Golenbock, D.T. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5 (2004) 190–198.

    Article  PubMed  CAS  Google Scholar 

  • Latz, E., Visintin, A., Lien, E., Fitzgerald, K., Monks, B., Kurt-Jones, E., Golenbock, D.T., Espevik, T. LPS rapidly transfers to and from the Golgi apparatus with the TLR4/MD-2/CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem 277 (2002) 47834–47843.

    Article  PubMed  CAS  Google Scholar 

  • Liu, L., Botos, I., Wang, Y., Leonard, J.N., Shiloach, J., Segal, D.M. Davies, D.R., Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320 (2008) 379–381.

    Article  PubMed  CAS  Google Scholar 

  • Lund, J.M., Alexopoulou, L., Sato, A., Karow, M., Adams, N.C., Gale, N.W., Iwasaki, A., Flavell, R.A. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 101 (2004) 5598–5603.

    Article  PubMed  CAS  Google Scholar 

  • Means, T.K., Lien, E., Yoshimura, A., Wang, Y., Golenbock, D.T., Fenton, M.J. The CD14 ligands Lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol 163 (1999) 6748–6755.

    PubMed  CAS  Google Scholar 

  • Medzhitov, R., Janeway, C.A. Decoding the patterns of self and nonself by the innate immune system. Science 296 (2002) 298–300.

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S., Janeway, C.A. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2 (1998) 253–258.

    Article  PubMed  CAS  Google Scholar 

  • Morr, M., Takeuchi, O., Akashi, S., Simon, M.M., Muhlradt, P.F. Differential recognition of structural details of bacterial lipopeptides by Toll-like receptors. Eur J Immunol 32 (2002) 3337–3347.

    PubMed  CAS  Google Scholar 

  • Motshwene, P.G., Moncrieffe, M.C., Grossmann, J.G., Kao, C., Ayaluru, M., Sandercock, A.M., Robinson, C.V., Latz, E., Gay, N.J. An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. J Biol Chem 284(37) (2009) 25404–25411.

    Article  PubMed  CAS  Google Scholar 

  • Nagai, Y., Akashi, S., Nagafuku, M., Ogata, M., Iwakura, Y., Akira, S., Kitamura, T., Kosugi, A., Kimoto, M., Miyake, K. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3 (2002) 667–672.

    PubMed  CAS  Google Scholar 

  • Nichols, B.J., Kenworthy, A.K., Polishchuk, R.S., Lodge, R., Roberts, T.H., Hirschberg, K., Lippincott-Schwartz, J. Rapid Cycling of lipid raft markers between the cell surface and golgi complex. J Cell Biol 153 (2001) 529–541.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, B.J., Lippincott-Schwartz, J. Endocytosis without clathrin coated pits. Trends Cell Biol 11 (2001) 406–412.

    Article  PubMed  CAS  Google Scholar 

  • Nishiya, T., DeFranco, A.L. Ligand-regulated chimeric receptor approach reveals distinctive subcellular localisation and signaling properties of the Toll-like receptors. J Biol Chem 279 (2004) 19008–19017.

    Article  PubMed  CAS  Google Scholar 

  • Nyman, T., Stenmark, P., Flodin, S., Johansson, I., Hammarstrom, M., Nordlund, P. The crystal structure of the human toll-like receptor 10 cytoplasmic domain reveals a putative signaling dimer. J Biol Chem 283 (2008) 11861–11865.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill, L., The Toll/interleukin-1 receptor domain: a molecular switch for inflammation and host defense. Biochem Soc Trans 28 (2000) 557–563.

    PubMed  Google Scholar 

  • Ozinsky, A., Underhill, D.M., Fontenot, J.D., Hajjar, A.M., Smith, K.D., Wilson, C.B., Schroeder, L., Aderem, A. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA 97 (2000) 13766–13771.

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans, L., Helenius, A. Endocytosis via caveolae. Traffic 3 (2002) 311–320.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, A., Bottcher, A., Orso, E., Kapinsky, M., Nagy, P., Bodnar, A., Spreitzer, I., Liebisch, G., Drobnik, W., Gempel, K., Horn, M., Holmer, S., Hartung, T., Multhoff, G., Schutz, G., Schindler, H., Ulmer, A.J., Heine, H., Stelter, F., Schutt, C., Rothe, G., Szollosi, J., Damjanovitch, S., Schmitz, G. Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur J Immunol 31 (2001) 3153–3164.

    Article  PubMed  CAS  Google Scholar 

  • Poltorak, A., He, X.L., Smirnova, I., Liu, M.Y., VanHuffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., RicciardiCastagnoli, P., Layton, B., Beutrel, B. Defective LPS signaling in C3H/Hej and C57BL/10ScCr mice: Mutations in TLR4 gene. Science 282 (1998) 2085–2088.

    Article  PubMed  CAS  Google Scholar 

  • Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S., Beutler, B. Physical contact between lipopolysaccharide and Toll-like receptor 4 revealed by genetic complementation. Proc Natl Acad Sci USA 97 (2000) 2163–2167.

    Article  PubMed  CAS  Google Scholar 

  • Pralle, A., Keller, P., Florin, E.L., Simons, K., Horber, J.K.H. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148 (2000) 997–1007.

    Article  PubMed  CAS  Google Scholar 

  • Qureshi, S.T., Lariviere, L., Leveque, G., Clermont, S., Moore, K.J., Gros, P., Malo, D. Endotoxin-tolerant mice have mutations in toll-like receptor 4 (TLR4). J Exp Med 189 (1999) 615–625.

    Article  PubMed  CAS  Google Scholar 

  • Roth, T.F., Porter, K.R. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. J Cell Biol 20 (1964) 313–330.

    Article  PubMed  CAS  Google Scholar 

  • Sargiacomo, M., Sudol, M., Tang, A., Lisanti, M.P. Signal transducing molecules and GPI-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 122 (1993) 789–807.

    Article  PubMed  CAS  Google Scholar 

  • Schwandner, R., Dziarski, R., Wesche, H., Rothe, M., Kirschning, C.J. Peptidoglycan- and Lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J Biol Chem 274 (1999) 17406–17409.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K., Ikonen, E. Functional rafts in membranes. Nature 387 (1997) 569–570.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, K., Kaisho, T., Akira, S. Toll-like receptors. Ann Rev Immunol 21 (2003) 335–376.

    Article  CAS  Google Scholar 

  • Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K., Akira, S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11 (1999) 443–451.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, O., Kawai, T., Muhlradt, P.F., Morr, M., Randolf, J.D., Zychlinsky, A., Takeda, K., Akira, S. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13 (2001) 933–940.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R.L., Akira, S. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169 (2002) 10–14.

    PubMed  CAS  Google Scholar 

  • Tobias, P.S., Soldau, K., Ulevitch, R.J. Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. J Exp Med 164 (1986) 785–793.

    Article  Google Scholar 

  • Triantafilou, K., Triantafilou, M., Dedrick, R.L. A CD14-independent LPS receptor cluster. Nat Immunol 4 (2001) 338–345.

    Article  Google Scholar 

  • Triantafilou, M., Brandenburg, K., Kusumoto, S., Fukase, K., Mackie, A., Seydel, U., Triantafilou, K. Combinational clustering of receptors following stimulation by bacterial products determines lipopolysaccharide responses. Biochem J 381, (2004a) 527–536.

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou, M., Brandenburg, K., Kusumoto, S., Fukase, K., Mackie, A., Seydel, U., Triantafilou, K. Combinational clustering of receptors following stimulation by bacterial products determines LPS responses. Biochem J 381 (2004b) 527–536.

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou, M., Gamper, F.G., Haston, R.M., Mouratis, M.A., Morath, S., Hartung, T., Triantafilou, K. Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with cd36 and intracellular targeting. J Biol Chem 281 (2006) 31002–31011.

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou, M., Manukyan, M., Mackie, A., Morath, S., Hartung, T., Heine, H., Triantafilou, K. Lipoteichoic acid and Toll-like receptor 2 internalization and targeting to the Golgi are lipid-raft dependent. J Biol Chem 279 (2004c) 40882–40889.

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou, M., Miyake, K., Golenbock, D., Triantafilou, K. Mediators of the innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 115 (2002) 2603–2611.

    PubMed  CAS  Google Scholar 

  • Triantafilou, M., Morath, S., Mackie, A., Hartung, T., Triantafilou, K. Lateral diffusion of Toll-like receptors reveals that they are transiently confined within lipid rafts on the plasma membrane. J Cell Sci 117 (2004d) 4007–4014.

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou, M., Triantafilou, K. Receptor cluster formation during activation by bacterial products. J Endotoxin Res 9 (2003) 331–335.

    PubMed  CAS  Google Scholar 

  • Triantafilou, M., Triantafilou, K. The dynamics of LPS recognition: complex orchestration of multiple receptors. J Endotoxin Res 11 (2005) 5–11.

    PubMed  CAS  Google Scholar 

  • Underhill, D.M., Ozinsky, A., Hajjar, A.M., Stevens, A., Wilson, C.B., Bassetti, M., Aderem, A. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401 (1999) 811–815.

    Article  PubMed  CAS  Google Scholar 

  • Visintin, A., Latz, E., Monks, B.G., Espevik, T., Golenbock, D.T. Lysines 128 and 132 enable lipopolysaccharide binding to MD2, leading to Toll-like receptor 4-aggregation and signal transduction. J Biol Chem 278 (2003) 48313–48320.

    Article  PubMed  CAS  Google Scholar 

  • Werts, C., Tapping, R.I., Mathison, J.C., Chuang, T.H., Kravchenko, V., Saint Girons, I., Haake, D.A., Godowski, P.J., Hayashi, F., Ozinsky, A., Underhill, D.M., Kirschning, C.J., Wagner, H., Aderem, A., Tobias, P.S., Ulevitch, R.J. Leptospiral lipopolysaccharide activates cells through a TLR-2-dependent mechanism. Nat Immunol 2 (2001) 346–352.

    Article  PubMed  CAS  Google Scholar 

  • Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., Mathison, J.C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding-protein. Science 249 (1990), 1431–1433.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura, A., Lien, E., Ingalls, R.R., Tuomanen, E., Dziarski, R., Golenbock, D. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163 (1999) 1–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy Triantafilou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Triantafilou, M., Triantafilou, K. (2010). Membrane Partitioning: Is Location Everything When It Comes to Endotoxin Recognition?. In: Wang, X., Quinn, P. (eds) Endotoxins: Structure, Function and Recognition. Subcellular Biochemistry, vol 53. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9078-2_8

Download citation

Publish with us

Policies and ethics