Skip to main content

Benefit–Cost Evaluation of Seismic Risk Mitigation in Existing Non-ductile Concrete Buildings

  • Chapter
  • First Online:
Advances in Performance-Based Earthquake Engineering

Part of the book series: Geotechnical, Geological and Earthquake Engineering ((GGEE,volume 13))

Abstract

The risks of damage and collapse to older (non-ductile) reinforced concrete buildings and the cost-effectiveness of seismic retrofit are investigated through analyses of archetypical designs representative of construction in California prior to the introduction of more rigorous seismic design requirements in the mid-1970s. These risks for older buildings are compared to those in buildings that are designed to modern building code provisions that employ capacity design and ductile detailing requirements. The comparisons indicate that older non-ductile buildings have expected annual economic losses that are about twice those of the ductile buildings and risks of collapse and fatalities that are about 35 times higher. The cost effectiveness of seismic retrofit is examined to reduce damage and life safety risks. Considering the monetary benefits of both reduced damage and lives saved, these cost–benefit comparisons justify retrofit costs of up to about 20–40% of the building replacement value, implying that in most cases the retrofit of non-ductile concrete buildings would be cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deierlein GG (2004) Overview of a comprehensive framework for earthquake performance assessment, Performance-based seismic design concepts and implementation: Proceedings of the international workshop Bled, Slovenia, PEER TR 2004/05, pp 15–26

    Google Scholar 

  2. Goulet CA, Haselton CB, Mitrani-Reiser J, Beck JL, Deierlein GG, Porter KA, Stewart JP (2007) Evaluation of the seismic performance of a code-conforming reinforced-concrete frame building – from seismic hazard to collapse safety and economic losses. Earthq Eng Struct Dyn 36(13):1973–1997

    Article  Google Scholar 

  3. Haselton CB, Deierlein GG (2007) Assessing seismic collapse safety of modern reinforced concrete frame buildings, PEER TR 2007/08

    Google Scholar 

  4. ICBO (1967) Uniform Building Code. ICBO, Pasadena, CA

    Google Scholar 

  5. ICC (2003) International Building Code. ICC, Falls Church, VA

    Google Scholar 

  6. Krawinkler H, Miranda E (2004) Performance-based earthquake engineering. In: Borzognia Y, Bertero V (eds) Earthquake engineering: from engineering seismology to performance-based engineering, 1st edn, pp 9-1 – 9-59). CRC Press, Boca Raton, FL

    Google Scholar 

  7. Liel AB, Deierlein GG (2008) Assessing the collapse risk of California’s existing reinforced concrete frame structures: metrics for seismic safety decisions, Blume Earthquake Engineering Center, TR No. 166, Stanford University, Stanford, CA

    Google Scholar 

  8. Mitrani-Reiser J (2007) An ounce of prevention: probabilistic loss estimation for performance based earthquake engineering, Doctoral Dissertation, Caltech

    Google Scholar 

Download references

Acknowledgments:

This work has been supported by the PEER Center through the Earthquake Engineering Research Centers Program of the National Science Foundation (under award number EEC-9701568). The authors would also like to acknowledge valuable input from Curt Haselton, Judith Mitrani-Reiser, Marc Ramirez, Evan Reis, Ashley Spear, and Jackie Steiner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Deierlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Deierlein, G., Liel, A. (2010). Benefit–Cost Evaluation of Seismic Risk Mitigation in Existing Non-ductile Concrete Buildings. In: Fardis, M. (eds) Advances in Performance-Based Earthquake Engineering. Geotechnical, Geological and Earthquake Engineering, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8746-1_32

Download citation

Publish with us

Policies and ethics