Skip to main content

Gravity Data, Advanced Processing

  • Reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 216 Accesses

Synonyms

Gravity: spectral methods; Potential field transforms

Definition

Spectral analysis. Estimation and analysis of global frequency content of a signal, assumed stationary, most often using the Fast Fourier Transform (FFT).

Potential field transformations. Process of converting gravity (or magnetic) survey data into a new and physically meaningful form to facilitate its geological interpretation.

Euler and Werner deconvolution. Methods for automatically estimating depths to sources from gravity (or magnetic) survey data.

Wavelet analysis. Estimation and analysis of local frequency content of a non-stationary signal, using a wavelet transform (WT).

Introduction

The use of spectral analysis to interpret gravity anomalies goes back to the 1930s, but the modern approach in terms of the Fourier transform (FT) was developed in the 1960s and 1970s. Most of the methods are equally applicable to magnetic data, which is their more common area of use because of the huge volume of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Addison, P. S., 2002. The Illustrated Wavelet Transform Handbook. Bristol: Institute of Physics.

    Google Scholar 

  • Antoine, J.-P., Murenzi, R., Vandergheynst, P., and Ali, S. T., 2004. Two-dimensional Wavelets and Their Relatives. Cambridge: Cambridge University Press.

    Google Scholar 

  • Blakely, R. J., 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge: Cambridge University Press.

    Google Scholar 

  • Chambodut, A., Panet, I., Mandea, M., Diament, M., Holschneider, M., and Jamet, O., 2005. Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophysical Journal International, 163, 875–899.

    Google Scholar 

  • Dransfield, M. H., and Lee, J. B., 2004. The Falcon® airborne gravity gradiometer survey systems, in R.J.L. Lane, ed. Airborne Gravity 2004 - Abstracts from the ASEG-PESA Airborne Gravity 2004 Workshop: Geoscience Australia Record 2004/18, 15–19.

    Google Scholar 

  • FitzGerald, D., Reid, A., and McInerney, P., 2004. New discrimination techniques for Euler deconvolution. Computers and Geosciences, 30, 461–469.

    Google Scholar 

  • Foufoula-Georgiou, E., and Kumar, P. (eds.), 1994. Wavelets in Geophysics. San Diego: Academic.

    Google Scholar 

  • Grant, F. S., and West, G. F., 1965. Interpretation Theory in Applied Geophysics. New York: McGraw Hill.

    Google Scholar 

  • Grossman, A., and Morlet, J., 1984. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis, 15, 723–736.

    Google Scholar 

  • Hornby, P., Boschetti, F., and Horowitz, F. G., 1999. Analysis of potential field data in the wavelet domain. Geophysical Journal International, 137, 175–196.

    Google Scholar 

  • Jacobsen, B. H., 1987. A case for upward continuation as a standard separation filter for potential field maps. Geophysics, 52, 1138–1148.

    Google Scholar 

  • Keller, W., 2004. Wavelets in Geodesy and Geodynamics. Berlin: de Gruyter.

    Google Scholar 

  • Kirby, J. F., 2005. Which wavelet best reproduces the Fourier power spectrum? Computers and Geosciences, 31, 846–864.

    Google Scholar 

  • Kirby, J. F., and Swain, C. J., 2009. A reassessment of spectral T e estimation in continental interiors: the case of North America. Journal of Geophysical Research, 114, B08401, doi:10.1029/2009JB006356.

    Google Scholar 

  • Klees, R., and Haagmans, R. (eds.), 2000. Wavelets in the Geosciences. Berlin: Springer.

    Google Scholar 

  • Kumar, P., and Foufoula-Georgiou, E., 1997. Wavelet analysis for geophysical applications. Reviews of Geophysics, 35, 385–412.

    Google Scholar 

  • Li, X., 2006. Understanding 3D analytic signal amplitude. Geophysics, 71, L13–L16, doi:10.1190/1.2184367.

    Google Scholar 

  • Mikhailov, V., Pajot, G., Diament, M., and Price, A., 2007. Tensor deconvolution: a method to locate equivalent sources from full tensor gravity data. Geophysics, 72, 161–169, doi:10.1190/1.2749317.

    Google Scholar 

  • Moreau, F., Gibert, D., Holschneider, M., and Saracco, G., 1997. Wavelet analysis of potential fields. Inverse Problems, 13, 165–178.

    Google Scholar 

  • Mushayandebvu, M. F., Lesur, V., Reid, A. B., and Fairhead, J. D., 2001. Magnetic source parameters of two-dimensional structures using extended Euler deconvolution. Geophysics, 66, 814–823.

    Google Scholar 

  • Nabighian, M. N., 1984. Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations. Geophysics, 49, 780–786.

    Google Scholar 

  • Nabighian, M. N., 2005. Historical development of the gravity method in exploration. Geophysics, 70, 63ND–89ND, doi:10.1190/1.2133785.

    Google Scholar 

  • Nabighian, M. N., and Hansen, R. O., 2001. Unification of Euler and Werner deconvolution in three dimensions via the generalised Hilbert transform. Geophysics, 66, 1805–1810.

    Google Scholar 

  • Nettleton, L. L., 1976. Gravity and Magnetics in Oil Prospecting. New York: McGraw-Hill.

    Google Scholar 

  • Panet, I., Chambodut, A., Diament, M., Holschneider, M., and Jamet, O., 2006. New insights on intraplate volcanism in French Polynesia from wavelet analysis of GRACE, CHAMP, and sea surface data. Journal of Geophysical Research, 111, B09403, doi:10.1029/2005JB004141.

    Google Scholar 

  • Parker, R. L., 1972. The rapid calculation of potential anomalies. Geophysical Journal of the Royal Astronomical Society, 31, 447–455.

    Google Scholar 

  • Reid, A. B., Allsop, J. M., and Granser, H., 1990. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55, 80–91.

    Google Scholar 

  • Ridsdill-Smith, T. A., and Dentith, M. C., 1999. The wavelet transform in aeromagnetic processing. Geophysics, 64, 1003–1013.

    Google Scholar 

  • Spector, A., and Grant, F. S., 1970. Statistical models for interpreting aeromagnetic data. Geophysics, 35, 293–302.

    Google Scholar 

  • Thompson, D. T., 1982. EULDPH: a new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47, 31–37.

    Google Scholar 

  • Torrence, C., and Compo, G. P., 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 779, 61–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Swain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Swain, C.J., Kirby, J.F. (2011). Gravity Data, Advanced Processing. In: Gupta, H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8702-7_89

Download citation

Publish with us

Policies and ethics