Skip to main content

Radioactivity in Earth’s Core

  • Reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 623 Accesses

Definition

Lithophile. Affinity for silicates

Chalcophile. Affinity for sulfur

Siderophile. Affinity for metals

BSE. Bulk Silicate Earth refers to primitive silicate material in the Earth from which the core is separated. Corresponds to the total mantle + crust system of silicates now.

P, T. Pressure, temperature

TW. Terawatt. 1 TW = 1012 W

D K . Concentration of K in Fe-alloy ⁄ Concentration of K in silicate melt.

GPa. GigaPascal =109 Pascals (1 GigaPascal is equivalent to 10 kilobars of pressure)

Geoneutrinos. Electron antineutrinos produced inside the Earth due to β decay of naturally occurring radioactive elements in the Earth.

Oxygen fugacity, fO 2. A measure of the oxidation state of a system irrespective of the presence or absence of a gas phase containing free oxygen.

IW buffer. Iron–Wustite buffer. A synthetic redox mineral reference buffer representing the oxygen fugacity of a system where Femetal is in equilibrium with FeO (wustite), according to the reaction Femetal + ½O2...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Badro, J., Fiquet, G., Guyot, F., Gregoryanz, E., Occelli, F., Antonangeli, D., and d’Astuto, M., 2007. Effect of light elements on the sound velocities in solid iron: implications for the composition of the Earth’s core. Earth and Planetary Science Letters, 254, 233–238.

    Google Scholar 

  • Bao, X., Secco, R. A., Gagnon, J. E., and Fryer, B. J., 2005. Experiments of U solubility in Earth‘s Core. EOS Transactions, American Geophysical Union. 86 (18): Jt. Assem. Suppl. (abstr).

    Google Scholar 

  • Bao, X., Secco, R. A., Gagnon, J. E., and Fryer, B. J., 2006. Uranium partitioning between liquid iron and silicate melt at high pressures: implications for uranium solubility in planetary cores. arXiv:astro-ph/0606614.

    Google Scholar 

  • Bouhifd, M. A., and Jephcoat, A. P., 2003. The effect of pressure on partitioning of Ni and Co between silicate and iron-rich metal liquids: a diamond-anvil cell study. Earth and Planetary Science Letters, 209, 245–255.

    Google Scholar 

  • Bouhifd, M. A., Gautron, L. A., Bolfan-Casanova, N., Malavergne, V., Hammouda, T., Andrault, D., and Jephcoat, A. P., 2007. Potassium partitioning into molten iron alloys at high pressure: implications for Earth’s core. Physics of the Earth and Planetary Interiors, 160, 22–33.

    Google Scholar 

  • Buffett, B. A., 2003. The Thermal State of Earth’s Core. Science, 299, 1675–1676.

    Google Scholar 

  • Bukowinski, M. S. T., 1976. The effect of pressure on the physics and chemistry of potassium. Geophysical Research Letters, 3, 491–503.

    Google Scholar 

  • Butler, S. L., Peltier, W. R., and Costin, S. O., 2005. Numerical models of the Earth’s thermal history: effects of inner-core solidification and core potassium. Physics of the Earth and Planetary Interiors, 152, 22–42.

    Google Scholar 

  • Chabot, N. L., and Drake, M. J., 1999. Potassium solubility in metal: the effects of composition at 15 kbar and 1900°C on partitioning between iron alloys and silicate melts. Earth and Planetary Science Letters, 172, 323–335.

    Google Scholar 

  • Chabot, N. L., and Agee, C. B., 2003. Core formation in the Earth and Moon: new experimental constraints from V, Cr, and Mn. Geochimica et Cosmochimica Acta, 67, 2077–2091.

    Google Scholar 

  • Chabot, N. L., Draper, D. S., and Agee, C. B., 2005. Conditions of core formation in the Earth: constraints from nickel and cobalt partitioning. Geochimica et Cosmochimica Acta, 69, 2141–2151.

    Google Scholar 

  • Corgne, A., Kesav, S., Fei, Y., and McDonough, W., 2007. How much potassium is in the Earth’s core? New insights from partitioning experiments. Earth and Planetary Science Letters, 256, 567–576.

    Google Scholar 

  • Costin, S. O., and Butler, S. L., 2006. Modelling the effects of internal heating in the core and lowermost mantle on the earth’s magnetic history. Physics of the Earth and Planetary Interiors, 157, 55–71.

    Google Scholar 

  • Enomoto, S., Ohtani, E., Inoue, K., and Suzuki, A., 2005. Neutrino geophysics with KamLAND and future prospects. arXiv:hep-ph/0508049.

    Google Scholar 

  • Feber, R. C., Wallace, T. C., and Libby, L. M., 1984. Uranium in the Earth’s core. EOS. Transactions of the American Geophysical Union, 65, 785.

    Google Scholar 

  • Fiorentini, G., Lissia, M., Mantovani, F., and Vanucci, R., 2005. Geo-neutrinos: a new probe of Earth’s interior. Earth and Planetary Science Letters, 238, 235–247.

    Google Scholar 

  • Furst, M. J., Stapanian, M. I., and Burnett, D. S., 1982. Observation of non-lithophile behavior for U. Geophysical Research Letters, 9, 41–44.

    Google Scholar 

  • Ganguly, J., and Kennedy, G. C., 1977. Solubility of K in Fe-S liquid, Silicate-K-(FeS)liq equilibria, and their planetary implications. Earth and Planetary Science Letters, 35, 411–420.

    Google Scholar 

  • Gessmann, C. K., and Rubie, D. C., 1998. The effect of temperature on the partitioning of nickel, cobalt, manganese, chromium, and vanadium at 9GPa and constraints on formation of the Earth’s core. Geochimica et Cosmochimica Acta, 62, 867–882.

    Google Scholar 

  • Gessmann, C. K., Rubie, D. C., and McCammon, C. A., 1999. Oxygen fugacity dependence of Ni, Co, Mn, Cr, V, and Si partitioning between liquid metal and magnesiow¨ustite at 9–18 GPa and 2200°C. Geochimica et Cosmochimica Acta, 63, 1853–1863.

    Google Scholar 

  • Gessmann, C. K., and Rubie, D. C., 2000. The origin of the depletions of V, Cr, Mn in the mantles of the Earth and Moon. Earth and Planetary Science Letters, 184, 95–107.

    Google Scholar 

  • Gessman, C. K., and Wood, B. J., 2002. Potassium in the Earth’s core? Earth and Planetary Science Letters, 200, 63–78.

    Google Scholar 

  • Giammarchi, M. G., and Miramonti, L., 2006. Borexino: Geoneutrinos in Borexino. Earth, Moon and Planets, 99, 207–220.

    Google Scholar 

  • Goettel, K. A., 1976. Models for the origin and composition of the Earth, and the hypothesis of potassium in the earth’s core. Geophysical Surveys, 2, 369–397.

    Google Scholar 

  • Gubbins, D., Masters, T. G., and Jacobs, J. A., 1979. Thermal evolution of the Earth’s core. Geophysical Journal of the Royal Astronomical Society, 59, 57–99.

    Google Scholar 

  • Hall, H. T., and Murthy, V. R., 1971. The early chemical history of the earth: some critical elemental fractionations. Earth and Planetary Science Letters, 11, 239–244.

    Google Scholar 

  • Herndon, J. M., 1998. Composition of the deep interior of the earth: divergent geophysical development with fundamentally different geophysical implications. Physics of the Earth and Planetary Interiors, 105, 1–4.

    Google Scholar 

  • Herndon, J. M., 2006. Solar system processes underlying planetary formation, geodynamics, and the georeactor. Earth, Moon and Planets, 99, 53–89.

    Google Scholar 

  • Hillgren, V. J., Drake, M. J., and Rubie, D. C., 1996. High pressure and high temperature metal-silicate partitioning of siderophile elements: the importance of silicate liquid composition. Geochimica et Cosmochimica Acta, 60, 2257–2263.

    Google Scholar 

  • Hirao, N., Ohtani, E., Kondo, T., Endo, N., Kuba, T., Suzuki, T., and Kikegawa, T., 2006. Partitioning of potassium between iron and silicate at the core-mantle boundary. Geophysical Research Letters. 33, L08303, doi:10.1029/2005GL025324.

    Google Scholar 

  • Hofmeister, A. M., and Criss, R. E., 2005. Earth’s heat flux revised and linked to chemistry. Tectonophysics, 395, 159–177.

    Google Scholar 

  • Ito, E., Morooka, K., and Ujike, O., 1993. Dissolution of K in molten iron at high pressure and temperature. Geophysical Research Letters, 20, 1651–1654.

    Google Scholar 

  • Jana, D., and Walker, D., 1997. The influence of silicate melt composition on distribution of siderophile elements among metal and silicate liquids. Earth and Planetary Science Letters, 150, 463–472.

    Google Scholar 

  • Javoy, M., 1995. The integral enstatite chondrite model of the Earth. Geophysical Research Letters, 22, 2219–2222.

    Google Scholar 

  • Javoy, M., 1999. Chemical Earth models. In Earth and Planetary Sciences. C. R. Academy Science, 329, pp. 537–555.

    Google Scholar 

  • Labrosse, S., 2003. Thermal and magnetic evolution of the Earth’s core. Physics of the Earth and Planetary Interiors, 140, 127–143.

    Google Scholar 

  • Labrosse, S., and Macouin, M., 2003. The inner core and the geodynamo. Comptes Rendus Geoscience, 335, 37–50.

    Google Scholar 

  • Labrosse, S., Poirier, J.-P., and Le Mouel, J.-L., 2001. The age of the inner core. Earth and Planetary Science Letters, 190, 111–123.

    Google Scholar 

  • Lee, W. H. K., 1970. On the global variations of terrestrial heat-flow. Physics of the Earth and Planetary Interiors, 2, 332–341.

    Google Scholar 

  • Lee, K. K. M., and Jeanloz, R., 2003. High-pressure alloying of potassium and iron: radioactivity in the Earth’s core? Geophysical Research Letters, 30, 2212, doi:10.1029/2003GL018515.

    Google Scholar 

  • Lee, K. K. M., Steinle-Neumann, G., and Jeanloz, R., 2004. Ab-initio high-pressure alloying of iron and potassium: implications for the Earth’s core. Geophysical Research Letters, 31, L11603, doi:10.1029/2004GL019839, 2004.

    Google Scholar 

  • Lewis, J. S., 1971. Consequences on the presence of sulfur in the core of the Earth. Earth and Planetary Science Letters, 11, 130–134.

    Google Scholar 

  • Li, J., and Agee, C. B., 2001. The effect of pressure, temperature, oxygen fugacity and composition on partitioning of nickel and cobalt between liquid Fe-Ni-S alloy and liquid silicate: implications for the Earth’s core formation. Geochimica et Cosmochimica Acta, 65, 1821–1832.

    Google Scholar 

  • Lodders, K., 1995. Alkali elements in the Earth’s core: evidence from enstatite chondrites. Meteoritics, 30, 93–101.

    Google Scholar 

  • Lodders, K., and Fegley, B. J., Jr., 1998. The Planetary Scientist’s Companion. Oxford: Oxford University Press.

    Google Scholar 

  • Malavergne, V., Tarrida, M., Combes, R., Bureau, H., and Jones, J., 2007. New high-pressure and high-temperature metal/silicate partitioning of U and Pb: Implications for the cores of the Earth and Mars. Geochimica et Cosmochimica Acta, 71, 2637–2655.

    Google Scholar 

  • Mann, U., Frost, D. J., and Rubie, D. C., 2009. Evidence for high-pressure core-mantle differentiation from the metal-silicate partitioning of lithophile and weakly-siderophile elements. Geochimica et Cosmochimica Acta, 73, 7360–7386.

    Google Scholar 

  • Mantovani, F., Carmignani, G. L., Fiorentini, G., and Lissia, M., 2004. Antineutrinos from the Earth: a reference model and its uncertainties. Physical Review D, 69, 297–314.

    Google Scholar 

  • McDonough, W. F., 1999. Earth’s core. In Marshall, C. P., and Fairbridge, R. W. (eds.), Encyclopedia of Geochemistry. Dordrecht: Kluwer Academic.

    Google Scholar 

  • McDonough, W. F., 2003. Compositional model for the Earth’s core. In Carlson, R. W. (ed.), Treatise on Geochemistry. The Mantle and the Core, Vol. 2, pp. 547–568.

    Google Scholar 

  • Murrell, M. T., and Burnett, D. S., 1986. Partitioning of K, U, and Th between sulfide and silicate liquids: Implications for radioactive heating of planetary cores. Journal of Geophysical Research, 91, 8126–8136.

    Google Scholar 

  • Murthy, V. R., and Hall, H. T., 1970. The chemical composition of the Earth’s core: possibility of sulphur in the core. Physics of the Earth and Planetary Interiors, 2, 276–282.

    Google Scholar 

  • Murthy, V. R., 1991. Early differentiation of the earth and the problem of mantle siderophile elements: a new approach. Science, 253, 303–306.

    Google Scholar 

  • Murthy, V. R., van Westrenen, W., and Fei, Y., 2003. Experimental evidence that potassium is a substantial radioactive heat source in planetary cores. Nature, 423, 163–165.

    Google Scholar 

  • Murthy, V. R., 2006. Radioactivity of the Earth and the case for potassium in the Earth’s core. Earth, Moon and Planets, 99, 23–32.

    Google Scholar 

  • Murthy, V. R., Draper, D., and Agee, C., 2007. Uranium in the Earth’s core? Metal-silicate partitioning of Uranium at High Pressure and Temperature and Highly Reducing Conditions. In Workshop on Early Planetary Differentiation. Lunar Planetary Institute Contribution. 1355, pp. 78–79.

    Google Scholar 

  • Nimmo, F., Price, G. D., Brodholt, J., and Gubbins, D., 2004. The influence of potassium on core and geodynamo. Geophysical Journal International, 156, 363–376.

    Google Scholar 

  • Oversby, V. M., and Ringwood, A. E., 1972. Potassium distribution between metal and silicate and its bearing on the occurrence of potassium in the earth’s core. Earth and Planetary Science Letters, 14, 345–347.

    Google Scholar 

  • Pollack, H. N., Hurter, S. J., and Johnson, J. R., 1993. Heat flow from the Earth’s interior: analysis of the global data set. Reviews of Geophysics, 31, 267–280.

    Google Scholar 

  • Parker, L. J., Atou, T., and Badding, J. V., 1996. Transition element-like chemistry for potassium under pressure. Science, 273, 95–97.

    Google Scholar 

  • Raghavan, R. S., Schoenert, S., Enomoto, S., Shirai, S., Suekane, F., and Suzuki, A., 1998. Measuring the global radioactivity in the earth by multidetector antineutrino spectroscopy. Physical Review Letters, 80, 636–638.

    Google Scholar 

  • Righter, K., Drake, M. J., and Yaxley, G., 1997. Prediction of siderophile element metal/silicate partition coefficients to 20 GPa and 2800°C: the effects of pressure, temperature, oxygen fugacity, and silicate and metallic melt composition. Physics of the Earth and Planetary Interiors, 100, 115–134.

    Google Scholar 

  • Roberts, P. H., Jones, C. A., and Calderwood, A. R., 2003. Energy fluxes and Ohmic dissipation in the Earth’s core. In Jones, C. A., Soward, A. M., and Zhang, K. (eds.), Earth’s Core and Lower Mantle. Taylor: London.

    Google Scholar 

  • Rothschild, C. G., Chen, M. C., and Calaprice, F. P., 1998. Antineutrino geophysics with liquid scintillation detectors. Geophysical Research Letters, 25, 1083–1086.

    Google Scholar 

  • Rubie, D. C., Melosh, H. J., Reid, J. E., Liebske, C., and Righter, K., 2003. Mechanisms of metal–silicate equilibration in the terrestrial magma ocean. Earth and Planetary Science Letters, 205, 239–255.

    Google Scholar 

  • Schuiling, R. D., 2006. Is there a nuclear reactor at the center of the earth? Earth, Moon and Planets, 99, 33–49.

    Google Scholar 

  • Sleep, N. H., 2006. Strategy for applying neutrino geophysics to the earth sciences including planetary habitability. Earth, Moon and Planets, 99, 343–358.

    Google Scholar 

  • Stevenson, D. J., Spohn, T., and Schubert, G., 1983. Magnetism and thermal evolution of the terrestrial planets. Icarus, 54, 466–489.

    Google Scholar 

  • Van Schmus, W. R., 1995. Natural radioactivity of the crust and mantle. In Ahrens, T. J. (ed.), Global Earth Physics: A Handbook of Physical Constants, AGU Reference Shelf 1. Washington, DC: American Geophysical Union, pp. 283–291.

    Google Scholar 

  • Verhoogen, J., 1973. Thermal regime of the earth’s core. Physics of the Earth and Planetary Interiors, 7, 47–58.

    Google Scholar 

  • Wade, J., and Wood, B. J., 2005. Core formation and the oxidation state of the Earth. Earth and Planetary Science Letters, 236, 78–95.

    Google Scholar 

  • Walter, M. J., and Thibault, Y., 1995. Partitioning of tungsten and molybdenum between metallic liquid and silicate melt. Science, 270, 1186–1189.

    Google Scholar 

  • Wheeler, K. T., Walker, D., Fei, Y., Minarik, W., and McDonough, W., 2006. Experimental partitioning of uranium between liquid iron sulfide and liquid silicate: implications for radioactivity in the Earth’s core. Geochimica et Cosmochimica Acta, 70, 1537–1547.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. RamaMurthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

RamaMurthy, V. (2011). Radioactivity in Earth’s Core. In: Gupta, H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8702-7_75

Download citation

Publish with us

Policies and ethics