Skip to main content

Thermal Storage and Transport Properties of Rocks, I: Heat Capacity and Latent Heat

  • Reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Specific heat capacity; Thermal capacity; Volumetric heat capacity

Definition

Specific heat capacity c. Physical property defining the amount of sensible heat that can be stored in or extracted from a unit mass of rock per unit temperature increase or decrease, respectively. Isobaric and isochoric specific heat capacities are defined at constant pressure and volume, respectively; dimension: J kg−1 K−1.

Thermal capacity (also: volumetric heat capacity) ρ c. The product of isobaric specific heat capacity and density. Physical property defining the amount of sensible heat that can be stored in or extracted from a unit volume of rock per unit temperature increase or decrease, respectively; dimension: J m−3 K−1.

Thermal storage properties

The thermal regime of the Earth is defined by its heat sources and sinks, the heat storage and transport processes, and their corresponding physical properties. The storage properties are discussed below. The transport properties, thermal...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Beck, A. E., 1988. Methods for determining thermal conductivity and thermal diffusivity. In Hänel, R., Rybach, L., and Stegena, L. (eds.), Handbook of Terrestrial Heat Flow Density Determination. Dordrecht: Kluwer, pp. 87–124.

    Google Scholar 

  • Berman, R. G., 1988. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29(2), 445–522.

    Google Scholar 

  • Berman, R. G., and Brown, T. H., 1985. Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Contributions to Mineralogy and Petrology, 89, 168–183.

    Google Scholar 

  • Bina, C. R., and Helffrich, G., 1994. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. Journal of Geophysical Research, 99(B8), 15853–15860, doi:10.1029/94JB00462.

    Google Scholar 

  • Birch, F., 1966. Section 7: compressibility; elastic constants. In Clark S. P., Jr. (ed.), Handbook of Physical Constants. Rev. ed., Memoir 97, Washington: Geologoical Society of America, pp. 97–173.

    Google Scholar 

  • Brown, M. E., 2001. Introduction to Thermal Analysis: Techniques and Applications (Hot Topics in Thermal Analysis and Calorimetry). Dordrecht: Kluwer.

    Google Scholar 

  • Čermák, V., and Rybach, L., 1982. Thermal conductivity and specific heat of minerals and rocks. In Angenheister, G. (ed.), Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology. Berlin: Springer. New Series, Vol. V(1a), pp. 305–343.

    Google Scholar 

  • Clauser, C., 1992. Permeability of crystalline rocks. EOS Transactions of the American Geophysical Union, 73(21), 233, 237. (for an update see also: Clauser, C., 2001. Update of the permeability of crystalline rocks, Report, Institute for Applied Geophysics and Geothermal Energy, E.ON Energy Research Center, RWTH Aachen University, http://www.eonerc.rwth-aachen.de/go/id/tsm/; retrieved 16 Oct 2010.)

    Google Scholar 

  • Clauser, C., 2006. Geothermal Energy. In Heinloth, K. (ed.), Landolt-Börnstein, Group VIII: Advanced Materials and Technologies. Heidelberg: Springer. Energy Technologies, Subvol. C: Renewable Energies, Vol. 3, pp. 480–595.

    Google Scholar 

  • Clauser, C., Griesshaber, E., and Neugebauer, H. J., 2002. Decoupled thermal and mantle helium anomalies – Implications for the transport regime in continental rift zones. Journal of Geophysical Research, 107(B 11), 2269, doi:10.1029/2001JB000675.

    Google Scholar 

  • CODATA (Committee on Data for Science and Technology), 2006. CODATA Internationally Recommended Values of the Fundamental Physical Constants, Paris: International Council of Scientific Unions (ICSU), http://physics.nist.gov/cuu/Constants/index.html, retrieved 9 Sept 2010.

  • Deuss, A., and Woodhouse, J., 2001. Seismic observation of splitting of the mid-transition zone discontinuity in Earth's mantle. Science, 294, 354–357.

    Google Scholar 

  • Dziewonski, A. M., and Anderson, D. L., 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297–356.

    Google Scholar 

  • Fei, Y., and Saxena, S. K., 1987. An equation for the heat capacity of solids. Geochimica et Cosmochimica Acta, 52(2), 251–254.

    Google Scholar 

  • Haines, P. (ed.), 2002. Principles of Thermal Analysis and Calorimetry, Cambridge, UK: The Royal Society of Chemistry.

    Google Scholar 

  • Helffrich, G., 2000. Topography of the transition zone seismic discontinuities. Reviews of Geophysics, 38, 141–158.

    Google Scholar 

  • Hemminger, W. F., and Cammenga, H. K., 1989. Methoden der Thermischen Analyse. Berlin: Springer.

    Google Scholar 

  • Holland, T. J. B., and Powell, R., 1996. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309–343.

    Google Scholar 

  • Katsura, T., Yamada, H., Nishikawa, O., Song, M., Kubo, A., Shinmei, T., Yokoshi, S., Aizawa, Y., Yoshino, T., Walter, M. J., Ito, E., and Funakoshi, K-i, 2004. Olivine-wadsleyite transition in the system (Mg, Fe)2SiO4. Journal of Geophysical Research, 109, B02209, doi:10.1029/2003JB002438.

    Google Scholar 

  • Kelley, K., 1960. Contributions to the Data on Theoretical Metallurgy: XIII High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds, U. S. Bureau of Mines Bulletin 584, Washington DC: U. S. Government Printing Office.

    Google Scholar 

  • Kittel, C., 2004. Introduction to Solid State Physics, 8th edn. Hoboken: Wiley.

    Google Scholar 

  • Maier, C. G., and Kelley, K. K., 1932. An equation for the representation of high temperature heat content data. Journal of American Chemical Society, 54(8), 3243–3246.

    Google Scholar 

  • Mottaghy, D. C., Schellschmidt, R., Popov, Y. A., Clauser, C., Kukkonen, I. T., Nover, G., Milanovsky, S., and Romushkevich, R. A., 2005. New heat flow data from the immediate vicinity of the Kola super-deep borehole: vertical variation in heat flow confirmed and attributed to advection. Tectonophysics, 401(1–2), 119–142, doi:10.1016/j.tecto.2005.03.005.

    Google Scholar 

  • Mottaghy, D., Vosteen, H.-D., and Schellschmidt, R., 2008. Temperature dependence of the relationship of thermal diffusivity versus thermal conductivity for crystalline rocks. International Journal of Earth Sciences, 97, 435–442.

    Google Scholar 

  • Olhoeft, G. R., and Johnson, G. R., 1989. Densities of rocks and minerals. In Carmichael, R. S. (ed.), Practical Handbook of Physical Properties of Rocks and Minerals. Boca Raton: CRC Press, pp. 139–176.

    Google Scholar 

  • Petrunin, G. I., Popov, V. G., and Il’in, I. A., 2004. Conductive heat transfer in plagioclases. Izvestiya, Physics of the Solid Earth (English Translation), 40(9), 752–759.

    Google Scholar 

  • Robertson, E. C., and Hemingway, B. S., 1995. Heat Capacity and Heat Content of Rocks, Open-file report 95-622. Reston, VA: U. S. Geological Survey.

    Google Scholar 

  • Roy, R. F., Beck, A. E., and Touloukian, Y. S., 1981. Thermophysical Properties of Rocks, In Touloukian, Y. S., Judd, W. R., Roy, R. F., (eds.), Physical Properties of Rocks and Minerals, McGraw-Hill/CINDAS Data Series on Material Properties, New York: McGraw-Hill, Vol. II-2, pp. 409–502.

    Google Scholar 

  • Somerton, W. H., 1992. Thermal Properties and Temperature Related Behavior of Rock/Fluid Systems. Amsterdam: Elsevier.

    Google Scholar 

  • Stacey, F. D., and Davis, P. M., 2008. Physics of the Earth, 4th edn. Cambridge: University Press.

    Google Scholar 

  • Tipler, P. A., and Mosca, G. P., 2007. Physics for Scientists and Engineers: Extended Version. Basingstoke: Palgrave Macmillan.

    Google Scholar 

  • Waples, D. W., and Waples, J. S., 2004. A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: Minerals and Nonporous rocks. Natural Resources Research, 13(2), 97–122.

    Google Scholar 

  • Whittington, A. G., Hofmeister, A. M., and Nabelek, P. I., 2009. Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature, 458, 319–321, doi:10.1038/nature07818.

    Google Scholar 

  • Wohlenberg, J., 1982a. Density of minerals. In Hellwege, K.-H. (ed.), Group V: Geophysics Vol 1: Physical Properties of Rocks, Subvol. A. Berlin: Springer. Landolt-Börnstein, Vol. 1, pp. 66–113.

    Google Scholar 

  • Wohlenberg, J., 1982b. Density of rocks. In Hellwege, K.-H. (ed.), Group V: Geophysics Vol 1: Physical Properties of Rocks, Subvol. A. Berlin: Springer. Landolt-Börnstein, Vol. 1, pp. 113–120.

    Google Scholar 

Download references

Acknowledgments

This contribution benefitted from insightful comments by an anonymous reviewer and editorial help by Dr. Sukanta Roy, Hyderabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Clauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Clauser, C. (2011). Thermal Storage and Transport Properties of Rocks, I: Heat Capacity and Latent Heat. In: Gupta, H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8702-7_238

Download citation

Publish with us

Policies and ethics