Skip to main content

Surface Waves

  • Reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Surface waves are elastic waves which propagate along the surface of the earth and whose energy decays exponentially with depth.

Surface waves contain most of the long period energy (periods greater than 20 s) generated by earthquakes and recorded at teleseismic distances. Most prominent on records of moderate (M ≥ 5.5) earthquakes are the fundamental mode wave trains that have propagated along the direct great circle path between the epicenter and the station. The dispersive and attenuative properties of these wave trains have been used extensively, since the 1950s, to infer crust and upper mantle structure at the regional scale. For earthquakes of magnitude 7 or larger, successive, earth-circling surface wave trains can be followed for many hours (Figure 1) and are either analyzed individually or, at the longest periods (T > 250 s) they are combined over time lengths of tens of hours or days to produce a spectrum of Earth’s free oscillations (see Free Oscillations of the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Aki, K., and Richards, P. G., 1980. Quantitative Seismology, Theory and Methods. San Francisco: W.H. Freeman.

    Google Scholar 

  • Anderson, D. L., 1961. Elastic wave propagation in layered anisotropic media. Journal of Geophysical Research, 66, 2953–2963.

    Google Scholar 

  • Backus, G., and Gilbert, F., 1968. The resolving power of gross earth data. Geophysical Journal of the Royal Astronomical Society, 16, 169–2050.

    Google Scholar 

  • Backus, G., and Mulcahy, M., 1976. Moment tensors and other phenomenological descriptions of seismic sources I- continuous displacements. Geophysical Journal of the Royal Astronomical Society, 46, 341–371.

    Google Scholar 

  • Boschi, L., Becker, T. W., Soldati, G., and Dziewonski, A. M., 2006. On the relevance of Born theory in global seismic tomography. Geophysical Research Letters, 33, L06302, doi:10.1029/2005GL025063.

    Google Scholar 

  • Capon, J., 1970. Analysis of Rayleigh-wave multipath propagation at LASA. Bulletin of the Seismological Society of America, 60, 1701–1731.

    Google Scholar 

  • Cara, M., 1978. Regional variations of higher Rayleigh-mode phase velocities: a spatial filtering method. Geophysical Journal of the Royal Astronomical Society, 54, 439–460.

    Google Scholar 

  • Dziewonski, A. M., and Anderson, D. L., 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297–356.

    Google Scholar 

  • Dziewonski, A. M., Bloch, S., and Landisman, M., 1969. A new technique for the analysis of transient seismic signals. Bulletin of the Seismological Society of America, 59, 427–444.

    Google Scholar 

  • Dziewonski, A. M., Chou, A. T., and Woodhouse, J. H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86, 2825–2852.

    Google Scholar 

  • Ekström, G., Tromp, J., and Larson, E. W. F., 1997. Measurements and global models of surface wave propagation. Journal of Geophysical Research, 102, 8137–8157.

    Google Scholar 

  • Ewing, W. M., Jardetsky, W. S., and Press, F., 1957. Elastic Waves in Layered Media. New York: McGraw Hill.

    Google Scholar 

  • Fichtner, A., Kennett, B., Igel, H., and Bunge, H.-P., 2010. Full waveform tomography for radially anisotropic structure: new insights into present and past states of the Australasian upper mantle. Earth and Planetary Science Letters, 290, 270–280.

    Google Scholar 

  • Forsyth, D. W., 1975. The early structural evolution and anisotropy of the oceanic upper mantle. Geophysical Journal of the Royal Astronomical Society, 43, 103–162.

    Google Scholar 

  • Friederich, W., Wielandt, E., and Stange, S., 1993. Multiple forward scattering of surface waves: comparison with an exact solution and Born single-scattering methods. Geophysical Journal International, 112, 264–275.

    Google Scholar 

  • Gung, Y. C., Panning, M., and Romanowicz, B., 2003. Anisotropy and thickness of the lithosphere. Nature, 422, 707–711.

    Google Scholar 

  • Haskell, B., 1964. Radiation pattern of surface waves from point sources un a multi-layered medium. Bulletin of the Seismological Society of America, 54, 377.

    Google Scholar 

  • Kennett, B. L. N., 1972. Seismic waves in laterally heterogeneous media. Geophysical Journal of the Royal Astronomical Society, 27, 301–325.

    Google Scholar 

  • Knopoff, L., 1972. Observation and inversion of surface-wave dispersion. Tectonophysics, 13, 497–519.

    Google Scholar 

  • Kobayashi, N., and Nishida, K., 1998. Continuous excitation of planetary free oscillations by atmospheric disturbances. Nature, 395, 357–360.

    Google Scholar 

  • Komatitsch, D., and Vilotte, J.-P., 1998. The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88, 368–392.

    Google Scholar 

  • Kovach, R. L., and Anderson, D. L., 1964. Higher mode surface waves and their bearing on the structure of the Earth's mantle. Bulletin of the Seismological Society of America, 54, 161–182.

    Google Scholar 

  • Lander, A. V., 1989. Frequency-time analysis. In Keilis-Borok, V. I. (ed.), Seismic Surface Waves in a Laterally Inhomogeneous Earth. Dordrecht: Kluwer Academic, pp. 153–163.

    Google Scholar 

  • Lekic, V., and Romanowicz, B., 2010. Inferring upper mantle structure by full waveform tomography with the Spectral Element Method. Geophysical Journal International, in revision.

    Google Scholar 

  • Lerner-Lam, A., and Jordan, T. H., 1983. Earth structure from fundamental and higher-mode waveform analysis. Geophysical Journal of the Royal Astronomical Society, 75, 759–797.

    Google Scholar 

  • Longuet-Higgins, M., 1950. A theory of the origin of microseisms. Philosophical Transactions of Royal Society London, 243, 1–35.

    Google Scholar 

  • Mitchell, B. J., 1995. Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation. Reviews of Geophysics, 33, 441–462.

    Google Scholar 

  • Montagner, J. P., 2007. Upper mantle structure: global isotropic and anisotropic elastic tomography. In Romanowicz, B., and Dziewonski, A. M. (eds.), Treatise on Geophysics. Oxford: Elsevier, Vol. 1, pp. 559–590.

    Google Scholar 

  • Montagner, J. P., and Jobert, N., 1983. Variation with age of the deep structure of the Pacific Ocean inferred from very long-period Rayleigh wave dispersion. Geophysical Research Letters, 10, 273–276.

    Google Scholar 

  • Montagner, J. P., and Jobert, N., 1988. Vectorial tomography II. Application to the Indian Ocean. Geophysical Journal International, 94, 309–344.

    Google Scholar 

  • Montagner, J. P., and Nataf, H. C., 1988. Vectorial tomography – I. Theory. Geophysical Journal International, 94, 295–307.

    Google Scholar 

  • Montagner, J. P., and Tanimoto, T. 1991. Global upper mantle tomography of seismic velocities and anisotropy. Journal of Geophysical Research, 96(20), 20337–20351.

    Google Scholar 

  • Nishida, K., Kobayashi, N., and Fukao, Y., 2002. Origin of Earth’s ground noise from 2 to 20 mHz. Geophysical Research Letters, 29, 1413, doi:10.1029/2001GL013862.

    Google Scholar 

  • Nolet, G., 1975. Higher-Rayleigh modes in western Europe. Geophysical Research Letters, 2, 60–62.

    Google Scholar 

  • Nolet, G., 1990. Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs. Journal of Geophysical Research, 95, 8499–8512.

    Google Scholar 

  • Park, J., and Maupin, V., 2007. Theory and observations – wave propagation in anisotropic media. In Romanowicz, B., and Dziewonski, A. M. (eds.), Treatise on Geophysics. Oxford: Elsevier, Vol. 1, pp. 323–360.

    Google Scholar 

  • Rhie, J., and Romanowicz, B., 2004. Excitation of Earth's free oscillations by atmosphere-ocean-seafloor coupling. Nature, 431, 552–555.

    Google Scholar 

  • Ritsema, J., van Heijst, H. J., and Woodhouse, J. H., 2004. Global transition zone tomography. Journal of Geophysical Research, 109, B02302, doi:10.1029/2003JB002610.

    Google Scholar 

  • Romanowicz, B., 2002. Inversion of surface waves: a review. In Lee, W. H. K. (ed.), Handbook of Earthquake and Engineering Seismology, Part A. IASPEI, pp. 149–174.

    Google Scholar 

  • Romanowicz, B., and Mitchell, B. J., 2007. Q in the Earth from crust to core. In Romanowicz, B., and Dziewonski, A. M. (eds.), Treatise of Geophysics. Oxford: Elsevier, Vol. 1, pp. 731–774.

    Google Scholar 

  • Romanowicz, B., Panning, M., Gung, Y., and Capdeville, Y., 2008. On the computation of long period seismograms in a 3D earth using normal mode based approximations. Geophysical Journal International, 175, 520–536.

    Google Scholar 

  • Saito, M., 1967. Excitation of free oscillations and surface waves by a point source in a vertically heterogeneous Earth. Journal of Geophysical Research, 72, 3689.

    Google Scholar 

  • Shapiro, N. M., Campillo, M., Stehly, L., Ritzwoller, M. H., 2005. High-resolution surface wave tomography from ambient seismic noise. Science, 307, 1615–1618.

    Google Scholar 

  • Snieder, R., 1988. Large-scale waveform inversions of surface waves for lateral heterogeneity, 1. Theory and numerical examples. Journal of Geophysical Research, 93, 12055–12065.

    Google Scholar 

  • Tanimoto, T., and Anderson, D. L., 1985. Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100-250s. Journal of Geophysical Research, 90, 1842–1858.

    Google Scholar 

  • Tape, C., Liu, J., Maggi, A., and Tromp, J., 2010. Seismic tomography of the Southern California crust based on the spectral-element and adjoint methods. Geophysical Journal International, 180, 433–462.

    Google Scholar 

  • Thurber, C., and Ritsema, J., 2007. Seismic tomography and inverse methods. In Romanowicz, B., and Dziewonski, A. M. (eds.), Treatise on Geophysics. Oxford: Elsevier, Vol. 1, pp. 1323–1360.

    Google Scholar 

  • Toksöz, M. N., and Anderson, D. L., 1966. Phase velocities of long period surface waves and structure of the upper mantle, 1, Great circle Love and Rayleigh wave data. Journal of Geophysical Research, 71, 1649–1658.

    Google Scholar 

  • Trampert, J., and van Heijst, H., 2006. Global azimuthal anisotropy in the transition zone. Science, 296, 1297–1299.

    Google Scholar 

  • Tsai, Y. B., and Aki, K., 1971. Amplitude spectra of surface waves from small earthquakes and underground nuclear explosions. Journal of Geophysical Research, 75, 5729.

    Google Scholar 

  • van Heist, H., and Woodhouse, J., 1997. Measuring surface-wave overtone phase velocities using a mode-branch stripping technique. Geophysical Journal International, 131, 209–230.

    Google Scholar 

  • Woodhouse, J. H., 1974. Surface waves in laterally varying structure. Geophysical Journal of the Royal Astronomical Society, 37, 461–490.

    Google Scholar 

  • Woodhouse, J. H., 1988. The calculation of eigenfrequencies and eigenfunctions of the free oscillations of the earth and the sun. In Doornbos, D. J. (ed.), Seismological Algorithms. San Diego: Academic Press, pp. 321–370.

    Google Scholar 

  • Woodhouse, J. H., and Dziewonski, A. M., 1984. Mapping the upper mantle: three dimensional modelling of the earth structure by inversion of seismic waveforms. Journal of Geophysical Research, 89, 5953–5986.

    Google Scholar 

  • Yang, Y., and Forsyth, D. W., 2006. Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels. Geophysical Journal International, 166, 1148–1160.

    Google Scholar 

  • Yu, Y., and Park, J., 1994. Hunting for azimuthal anisotropy beneath the Pacific Ocean region. Journal of Geophysical Research, 99, 15399–15421.

    Google Scholar 

  • Yuan, H., and Romanowicz, B., 2010. Lithospheric layering in the north American craton. Nature, 466, 1063–1069.

    Google Scholar 

  • Zhou, Y., Nolet, G., Dahlen, F., and Laske, G., 2006. Global upper-mantle structure from finite-frequency surface-wave tomography. Journal of Geophysical Research, 111, B04,304, doi:10.1029/2005JB003677.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Romanowicz, B. (2011). Surface Waves. In: Gupta, H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8702-7_143

Download citation

Publish with us

Policies and ethics