Skip to main content

Chapter 10 The Role of the Methyl-Erythritol-Phosphate (MEP)Pathway in Rhythmic Emission of Volatiles

  • Chapter
The Chloroplast

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 31))

Summary

Plants release an array of terpenoid compounds including hemiterpenes, mono- and sesquiterpenes, irregular terpenes and some diterpenes throughout their life cycles. These secondary metabolites play crucial roles in pollinator attraction, defense, communication and interaction with the surrounding environment. Release of these compounds from flowers and undamaged and herbivore attacked leaves follows a rhythmic profile, which is induced by illumination and often controlled by a circadian clock. In plants two distinct biochemical pathways localized in different subcellular compartments, the cytosolic mevalonic acid (MVA) pathway and plastidial methyl-erythritol-phosphate (MEP) pathway, are responsible for the biosynthesis of basic carbon building blocks for terpenoid compounds. Mounting evidence suggests that the flux through the MEP pathway changes rhythmically over a daily light/dark cycle peaking during the day. In this chapter we discuss the contribution of the MEP pathway to the rhythmic emission of terpenoids released from different plant tissues and the regulatory steps controlling the flux through this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

aa:

amino acid

ALA:

alamethicin

CaMV:

cauliflower mosaic virus

CCD:

carotenoid cleavage dioxygenase

CDP:

ME, 4-diphosphocytidyl-2-C-methyl-D-erythritol

CDP-ME2P:

4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate

CMK:

4-diphosphocytidyl-2-C-methyl-D-erythritol kinase

CMS:

4-diphosphocytidyl-2-C-methyl-D-erythritol synthase

DMAPP:

dimethylallyl diphosphate

DOX:

1-deoxy-D-xylulose

DXP:

1-deoxy-D-xylulose 5-phosphate

DXR:

1-deoxy-D-xylulose 5-phosphate reductoisomerase

DXS:

1-deoxy-D-xylulose 5-phosphate synthase

FaNES:

Fragaria ananassa nerolidol synthase

FPP:

farnesyl diphosphate

FTC:

Forest tent caterpillar

EST:

expressed sequence tag

GA-3P:

glyceraldehyde-3-phosphate

GGPP:

geranyl geranyl diphosphate

GGPPS:

geranyl geranyl diphosphate synthase

GPP:

geranyl diphosphate

GPPS:

geranyl diphosphate synthase

GPPS:

SSU geranyl diphosphate synthase small subunit

HDR:

1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase

HDS:

1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase

HMBPP:

1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate

HMG-CoA:

3-hydroxy-3-methylglutaryl-CoA

HMGR:

3-hydroxy-3-methylglutaryl-CoA reductase

IDI:

isopentenyl diphosphate isomerase

IPP:

isopentenyl diphosphate

ISPS:

isoprene synthase

MCS:

2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase

ME-2,4cPP:

2-C-methyl-D-erythritol 2,4-cyclodiphosphate

MEP:

2-C-methyl-D-erythritol 4-phosphate

MeJA:

methyl jasmonate

MVA:

mevalonic acid

MVL:

mevalolactone

RACE:

rapid amplification of cDNA ends

RT-PCR:

reverse transcriptase-polymerase chain reaction

TLC:

thin layer chromatography

TPS:

terpene synthase

References

  • Adam P, Hecht S, Eisenreich W, Kaiser J, Grawert T, Arigoni D, Bacher A and Rohdich F (2002) Biosynthesis of terpenes: studies on 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase. Proc Natl Acad Sci USA 99: 12108–12113

    Article  PubMed  CAS  Google Scholar 

  • Adam KP, Thiel R and Zapp J (1999) Incorporation of 1-[1-(13)C]Deoxy-D-xylulose in chamomile sesquiterpenes. Arch Biochem Biophys 369: 127–132

    Article  PubMed  CAS  Google Scholar 

  • Affek HP and Yakir D (2002) Protection by isoprene against singlet oxygen in leaves. Plant Physiol 129: 269–277

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel WJ, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W and Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15: 2866–2884

    Article  PubMed  CAS  Google Scholar 

  • Arimura G, Huber DPW and Bohlmann J (2004a) Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa x deltoides): cDNA cloning, functional characterization, and patterns of gene expression of (–)-germacrene D synthase, PtdTPS1. Plant J 37: 603–616

    Article  PubMed  CAS  Google Scholar 

  • Arimura G, Kost C and Boland W (2005) Herbivore-induced, indirect plant defences. Biochim Biophys Acta 1734: 91–111

    Article  PubMed  CAS  Google Scholar 

  • Arimura G, Ozawa R, Kugimiya S, Takabayashi J and Bohlmann J (2004b) Herbivore-induced defense response in a model legume: Two-spotted spider mites, Tetranychus urticae, induce emission of (E)-β-ocimene and transcript accumulation of (E)-β-ocimene synthase in Lotus japonicus. Plant Physiol 135: 1976–1983

    Article  PubMed  CAS  Google Scholar 

  • Bach TJ, Boronat A, Campos N, Ferrer A and Vollack KU (1999) Mevalonate biosynthesis in plants. Crit Rev Biochem Mol Biol 34: 107–122

    Article  PubMed  CAS  Google Scholar 

  • Boronat A (2010) The methylerythritol 4-phosphate pathway: regulatory role in plastid isoprenoid biosynthesis. In: Rebeiz CA, Benning C, Daniel H, Hoober K, Lichtenthaler HK, Portis A, Tripathy B (eds) The Chloroplast: Basics and Application. Springer, Dordrecht, Netherlands, pp. 119–126

    Google Scholar 

  • Brüggemann N and Schnitzler JP (2002a) Diurnal variation of dimethylallyl diphosphate concentrations in oak (Quercus robur L.) leaves. Physiol Plantarum 115: 190–196

    Article  Google Scholar 

  • Brüggemann N and Schnitzler JP (2002b) Relationship of isopentenyl diphosphate (IDP) isomerase activity to isoprene emission of oak leaves. Tree Physiol 22: 1011–1018

    Article  PubMed  Google Scholar 

  • Burke C and Croteau R (2002) Interactions with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J Biol Chem 277: 3141–3149

    Article  PubMed  CAS  Google Scholar 

  • Cao X-L, Boissard C, Juan AJ and Hewitt CN (1997) Biogenic emissions of volatile organic compounds from gorse (Ulex europaues): diurnal emission fluxes at Kelling Heath, England. J Geophys Res 102: 18903–18915

    Article  CAS  Google Scholar 

  • Carretero-Paulet L, Ahumada I, Cunillera N, Rodriguez-Conception M, Ferrer A, Boronat A and Campos N (2002) Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Plant Physiol 129: 1581—1591

    Article  PubMed  CAS  Google Scholar 

  • Carretero-Paulet L, Cairo A, Botella-Pavia P, Besumbes O, Campos N, Boronat A, and Rodriguez-Concepcion M (2006) Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Mol Biol 62: 683–695

    Article  PubMed  CAS  Google Scholar 

  • Chappell J (1995) Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Ann Rev Plant Physiol Plant Mol Biol 46: 521–547

    Article  CAS  Google Scholar 

  • De Moraes CM, Mescheer MC and Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel nonspecific females. Nature 410: 577–580

    Article  PubMed  Google Scholar 

  • Degen T, Dillmann C, Marion-Poll F and Turlings TCJ (2004) High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol 135: 1928–1938

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W and Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci U S A 102: 933–938

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Faldt J, Miller B and Bohlman J (2003) (E)-β-Ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: Function and expression of three terpene synthase genes of a new TPS-subfamily. Plant Cell 15: 1227–1241

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA and Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25: 417–440

    Article  CAS  Google Scholar 

  • Dudareva N, Pichersky E and Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135: 1893–1902

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH and Bacher A (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5: R221–R233

    Article  PubMed  CAS  Google Scholar 

  • Estévez JM, Cantero A, Reindl A, Reichler S and León P (2001) 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276: 22901–22909

    Article  PubMed  Google Scholar 

  • Funk JL, Jones CG, Baker CJ, Fuller HM, Giardina CP and Lerdau MT (2003) Diurnal variation in the basal emission rate of isoprene. Ecol Appl 13: 169–178

    Article  Google Scholar 

  • Gershenzon J and Dudareva N (2007) The function of terpene natural products in the natural world. Nature Chem Biol 3: 408–414

    Article  CAS  Google Scholar 

  • Geron C, Guenther A, Sharkey T and Arnts RR (2000) Temporal variability in basal isoprene emission factor. Tree Physiol 20: 799–805

    Article  PubMed  Google Scholar 

  • Hansen U, Van Eijk J, Bertin N, Staudt M, Kotzias D, Seufert G, Fugit J-L, Torres L, Cecinato A, Brancaleoni E, Ciccioli, P and Bomboi, T (1997) Biogenic emissions and CO2 gas exchange investigated on four Mediterranean shrubs. Atmos Environ 31: 157–166

    Article  CAS  Google Scholar 

  • Helsper JPF, Davies JA, Bouwmeester HJ, Krol AF and van Kampen MH (1998) Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. Planta 207: 88–95

    Article  CAS  Google Scholar 

  • Himmeldirk K, Kennedy IA, Hill RE, Sayer BG and Spenser ID (1996) Biosynthesis of vitamins B1 and B6 in Escherichia coli: concurrent incorporation of 1-deoxy-D-xylulose into thiamin and pyridoxol. J Chem Soc Chem Commun 1187–1188

    Google Scholar 

  • Hsieh MH and Goodman HM (2005) The Arabidopsis IspH homolog is involved in the plastid nonmevalonate pathway of isoprenoid biosynthesis. Plant Physiol 138: 641–653

    Article  PubMed  CAS  Google Scholar 

  • Julliard JH and Douce R (1991) Biosynthesis of the thiazole moiety of thiamine (vitamin B1) in higher plant chlroplasts. Proc Natl Acad Sci USA 88: 2042–2045

    Article  PubMed  CAS  Google Scholar 

  • Kesselmeier J and Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atm Chem 33: 23–88

    Article  CAS  Google Scholar 

  • Kessler A and Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Knudsen JT and Gershenzon J (2006) The chemistry diversity of floral scent. In: Dudareva N and Pichersky E (eds) Biology of Floral Scent. CRC Press, Boca Raton, FL, pp. 27–52

    Google Scholar 

  • Kunert M, Biedermann A, Koch T and Boland W (2002) Ultrafast sampling and analysis of plant volatiles by a hand-held miniaturized GC with pre-concentration unit: kinetic and quantitative aspects of plant volatile production. J Sep Sci 25: 677–684

    Article  CAS  Google Scholar 

  • Lange BM, Rujan T, Martin W and Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97: 13172–13177

    Article  PubMed  CAS  Google Scholar 

  • Laule O, Furholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W and Lange BM (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100: 6866–6871

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50: 47–66

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (2010) The non-mevalonate DOXP/MEP pathway of chloroplast isoprenoid and pigment biosynthesis. In: Rebeiz CA, Benning C, Daniel H, Hoober K, Lichtenthaler HK, Portis A, Tripathy B (eds) The Chloroplast: Basics and Application, Chapter 7. Springer, Netherlands, pp. 95–118

    Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A and Rohmer M (1997a) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate independent pathway. FEBS Lett 400: 271–274

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Rohmer M and Schwender J (1997b) Two independent biochemical pathways for isopentenyl diphosphate (IPP) and isoprenoid biosynthesis in higher plants. Physiol Plant 101: 643–652

    Article  CAS  Google Scholar 

  • Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N and Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J 22: 503–513

    Article  PubMed  CAS  Google Scholar 

  • Loivamäki M, Louis S, Cinege G, Zimmer I, Fischbach RJ and Schnitzler JP (2007) Circadian rhythms of isoprene biosynthesis in grey poplar leaves. Plant Physiol 143: 540–551

    Article  PubMed  Google Scholar 

  • Loreto F, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M and Sharkey T (1996) Different sources of reduced carbon contribute to form three classes of terpenoid emitted by Quercus ilex L. leaves. Proc Natl Acad Sci U S A 93: 9966–9969

    Article  PubMed  CAS  Google Scholar 

  • Loreto F and Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127: 1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Pinelli P, Brancaleoni E and Ciccioli P (2004) 13C labeling reveals chloroplastic and extra-chloroplastic pools of dimethylallyl pyrophosphate and their contribution to isoprene formation. Plant Physiol 135: 1903–1907

    Article  PubMed  CAS  Google Scholar 

  • Loughrin JH, Manukian A, Heath RR, Turlings TCJ and Tumlinson JH (1994) Diurnal cycle of emission of induced volatile terpenoids herbivore-injured cotton plants. Proc Natl Acad Sci U S A 91: 11836–11840

    Article  PubMed  CAS  Google Scholar 

  • Loughrin JH, Potter DA, Hamilton-Kemp TR and Byers ME (1997) Diurnal emission of volatile compounds by Japanese Beetle-damaged grape leaves. Phytochemistry 45: 919–923

    Article  CAS  Google Scholar 

  • Lu S, Xu R, Jia JW, Pang JH, Matsuda SPT and Chen XY (2002) Cloning and functional characterization of a beta-pinene synthase from Artemisia annua that shows a circadian pattern of expression. Plant Physiol 130: 1335–1348

    Article  PubMed  CAS  Google Scholar 

  • Lumbreras V, Campos N and Boronat A (1995) The use of an alternative promoter in the Arabidopsis thaliana HMG1 gene generates an mRNA that encodes a novel 3-hydroxy-3 methylglutaryl coenzymeA reductase isoform with an extended N-terminal region. Plant J 8: 541–549

    Article  PubMed  CAS  Google Scholar 

  • Magel E, Mayrhofer S, Muller A, Zimmer I, Hampp R and Schnitzler J-P (2006) Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves. Atmos Environ 40: S138–S151

    Article  CAS  Google Scholar 

  • Mahmoud SS and Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA 98: 8915–8920

    Article  PubMed  CAS  Google Scholar 

  • Martin D, Gershenzon J and Bohlmann J (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol 132: 1586–1599

    Article  PubMed  CAS  Google Scholar 

  • Mayrhofer S, Teuber M, Zimmer I, Louis S, Fischbach RJ and Schnitzler J-P (2005) Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves. Plant Physiol 139: 474–484

    Article  PubMed  CAS  Google Scholar 

  • Mercke P, Kappers IF, Verstappen FWA, Vorst O, Dicke M and Bouwmeester HJ (2004) Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiol 135: 2012–2024

    Article  PubMed  CAS  Google Scholar 

  • Miller B, Madilao LL, Ralph S and Bohlmann J (2005) Insect-induced conifer defense: White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcript in Sitka spruce. Plant Physiol 137: 369–382

    Article  PubMed  CAS  Google Scholar 

  • Miller B, Oschinski C and Zimmer W (2001) First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli. Planta 213: 483–487

    Article  PubMed  CAS  Google Scholar 

  • Newman JD and Chappell J (1999) Isoprenoid biosynthesis in plants: Carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol 34: 95–106

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JK, Jakobsen HB, Friis P, Hansen K, Moller J and Olsen CE (1995) Asynchronous rhythms in the emission of volatiles from Hesperis matronalis flowers. Phytochemistry 38: 847–851

    Article  CAS  Google Scholar 

  • Nogués I, Brilli F and Loreto F (2006) Dimethylallyl diphosphate and geranyl diphosphate pools of plant species characterized by different isoprenoid emissions.Plant Physiol 141: 721–730

    Article  PubMed  Google Scholar 

  • Padhy PK and Varshney CK (2005) Isoprene emission from tropical tree species Environ Pollut 135: 101–109

    CAS  Google Scholar 

  • Peñuelas J, Llusia J, Asensio D and Munne-Bosch S (2005) Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Plant Cell Environ 28: 278–286

    Article  Google Scholar 

  • Peñuelas J and Munne-Bosch S (2005) Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci 10: 166–169

    Article  Google Scholar 

  • Pichersky E, Raguso RA, Lewinsohn E and Croteau R (1994) Floral scent production in Clarkia (Onagraceae). I. Localization and developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol 106: 1533–1540

    PubMed  CAS  Google Scholar 

  • Piel J, Donath J, Bandemer K and Boland W (1998) Mevalonate-independent biosynthesis of terpenoid volatiles in plants: Induced and constitutive emission of volatiles. Angew Chem Int Ed 37: 2478–2481

    Article  CAS  Google Scholar 

  • Qureshi N and Porter W (1981) Conversion of acetyl-coenzyme A to isopentenyl pyrophosphate. In: Porter JW and Spurgeon SL (eds) Biosynthesis of Isoprenoid Compounds. Wiley, New York, pp. 47–94

    Google Scholar 

  • Raguso RA, Levin RA, Foose SE, Holmberg MW and McDade LA (2003) Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 63: 265–284

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16: 565–574

    Article  PubMed  CAS  Google Scholar 

  • Rosenstiel TN, Fisher AJ, Fall R and Monson RK (2002) Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene and methylbutenol-emitting and nonemitting species. Plant Physiol 129: 1276–1284

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Ohara K and Yazaki K (2005) Gene expression and characterization of isoprene synthase from Populus alba. FEBS Lett 579: 2514–2518

    Article  PubMed  CAS  Google Scholar 

  • Schnitzler J-P, Arenz R, Steinbrecher R and Lehning A (1996) Characterization of an isoprene synthase from leaves of Quercus petraea (Mattuschka). Liebl Bot Acta 109: 216–221

    CAS  Google Scholar 

  • Schnurr JA and Guerra DJ (2000) The CaMV-35S promoter is sensitive to shortened photoperiod in transgenic tobacco. Plant Cell Rep 19: 279–282

    Article  CAS  Google Scholar 

  • Schwender J, Zeidler J, Gröner R, Müller C, Focke M, Braun S, Lichtenthaler FW and Lichtenthaler HK (1997) Incorporation of 1-deoxy-d-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett 414: 129–134

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Chen XY and Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 125: 2001–2006

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD and Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52: 407–436

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Yeh S,Wiberley AE, Falbel TG, Gong DM and Fernandez DE (2005) Evolution of the isoprene biosynthetic pathway in Kudzu. Plant Physiol 137: 700–712

    Article  PubMed  CAS  Google Scholar 

  • Silver GM and Fall R (1995) Characterization of aspen isoprene synthase, an enzyme responsible for leaf isoprene emission to the atmosphere. J Biol Chem 270: 13010–13016

    Article  PubMed  CAS  Google Scholar 

  • Simkin AJ, Underwood BA, Auldridge M, Loucas HM, Shibuya K, Schmelz E, Clark DG and Klee HJ (2004) Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers. Plant Physiol 136: 3504–3514

    Article  PubMed  CAS  Google Scholar 

  • Staudt M and Bertin N (1998) Light and temperature dependence of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves. Plant Cell Environ 21: 385–395

    Article  CAS  Google Scholar 

  • Staudt M, Bertin N, Hansen U, Seufert G, Ciccioli P, Foster P, Frenzel B and Fugit J-L (1997) Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field. Atmos Environ 31: 145–156

    Article  CAS  Google Scholar 

  • Takahashi S, Kuzuyama T, Watanabe H and Seto H (1998) A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid synthesis. Proc Natl Acad Sci USA 95: 9879–9884

    Article  PubMed  CAS  Google Scholar 

  • Tholl D, Croteau R and Gershenzon J (2001) Partial purification and characterization of the short-chain prenyltransferases, geranyl diphospate synthase and farnesyl diphosphate synthase, from Abies grandis (grand fir). Arch Biochem Biophys 386: 233–242

    Article  PubMed  CAS  Google Scholar 

  • Tholl D, Kish CM, Orlova I, Sherman D, Gershenzon J, Pichersky E and Dudareva N. (2004) Formation of mono-terpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell 16: 977–992

    Article  PubMed  CAS  Google Scholar 

  • Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castanera P and Sanchez-Serrano JJ (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc Natl Acad Sci USA 98: 8139–8144

    Article  PubMed  CAS  Google Scholar 

  • Velikova V and Loreto L (2005) On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant Cell Environ 28: 318–327

    Article  CAS  Google Scholar 

  • Wildermuth MC and Fall R (1998) Biochemical characterization of stromal and thylakoid-bound isoforms of isoprene synthase in willow leaves. Plant Physiol 116: 1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson MJ, Owen SM, Possell M, Hartwell J, Gould P, Hall A, Vickers C and Hewitt CN (2006) Circadian control of isoprene emissions from oil palm (Elaeis guineensis). Plant J 47: 960–968

    Article  PubMed  CAS  Google Scholar 

  • Wolfertz M, Sharkey TD, Boland W and Kühnemann F (2004) Rapid regulation of the methylerythritol 4-phosphate pathway during isoprene synthesis. Plant Physiol 135: 1939–1945

    Article  PubMed  CAS  Google Scholar 

  • Zeidler JG, Lichtenthaler HK, May HU and Lichtenthaler FW (1997) Is isoprene emitted by plants synthesized via the novel isopentenylpyrophosphate pathway? Z Naturforsch 52c: 15–23

    CAS  Google Scholar 

  • Zeidler J and Lichtenthaler HK (2001) Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation. Planta 213: 323–326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Foundation (Grant No. MCB-0615700) (N.D., D.R.), the Fred Gloeckner Foundation (N.D.) and the German Academic Exchange Service (N.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Dudareva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nagegowda, D.A., Rhodes, D., Dudareva, N. (2010). Chapter 10 The Role of the Methyl-Erythritol-Phosphate (MEP)Pathway in Rhythmic Emission of Volatiles. In: Rebeiz, C.A., et al. The Chloroplast. Advances in Photosynthesis and Respiration, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8531-3_10

Download citation

Publish with us

Policies and ethics