Skip to main content

Estimation of Quartz Content in Mineral Soils

  • Reference work entry
  • First Online:
Encyclopedia of Agrophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 563 Accesses

Definition

Mineral soils. Soils composed predominantly of minerals.

Quartz. One of the most common constituents of the Earth’s crust, abundant in sandstones, granite, and soils. It is made up of silica (SiO2) having a superior ability to conduct heat.

Thermal conductivity of soils. The bulk property of soils describing their ability to conduct heat. It is measured in Watts per Kelvin per meter (W/K/m).

Introduction

Thermal conductivity of soil solids (λ s) is an essential parameter required by a majority of models in the prediction of soil thermal conductivity (λ). The value of λ s depends strongly on the fraction of quartz (Θ q) in soil solids and its thermal conductivity (λ q), whose value is considerably higher than the remaining soil minerals. For that reason, Θ q is a key parameter for assessing λ s, but data on Θ q is very scarce and often contradictory with soil texture. Quartz (SiO2) occurs mainly in coarse soil fractions (i.e., sands and gravels) as it does not break up...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Bish, D. L., 1994. Quantitative X-ray diffraction analysis of soils, pp. 267–295. In Amonette, J. E., and Zelazny, L. W. (eds.), Quantitative Methods in Soil Mineralogy. Madison: SSSA Misc. Publ. SSSA.

    Google Scholar 

  • Campbell, G. S., Jungbauer, J. D., Bidlake, W. R., and Hungerford, R. D., 1994. Predicting the effect of temperature on soil thermal conductivity. Soil Science, 158(5), 307–313.

    CAS  Google Scholar 

  • Cass, A., Campbell, G. S., and Jones, T. L., 1984. Enhancement of thermal water vapor diffusion in soil. Soil Science Society of America Journal, 48, 25–32.

    Google Scholar 

  • Clauser, C., and Huenges, E., 1995. Thermal conductivity of rocks and minerals. In Ahrens, T. J. (ed.), Rock Physics and Phase Relations – A Handbook of Physical Constants. Washington: AGU Reference Shelf. American Geophysical Union, Vol. 3, pp. 105–126.

    Google Scholar 

  • Deru, M., 2003. A Model for Ground-Coupled and Moisture Transfer from Buildings. National Renewable Energy Laboratory, NREL/TP-550-33954, Contract No. DE-AC36-99-GO10337, http://www.nrel.gov/docs/fy03osti/33954.pdf (accessed 5 June 2006).

  • de Vries, D. A., 1952. Thermal conductivity of soil. Mededelingen van de Landbouwhogeschool te Wageningen, 52(1), 1–73: Trans: Building Research Station (Library Communication no. 759), England.

    Google Scholar 

  • de Vries, D. A., 1963. Thermal properties of soils. In van Wijk, W. R. (ed.), Physics of the Plant Environment. New York: John Wiley, pp. 210–235.

    Google Scholar 

  • Farouki, O. T., 1986. Thermal Properties of Soils. Series on Rock and Soil Mechanics. Clausthal-Zellerfeld: Trans Tech Publications, Vol. 11.

    Google Scholar 

  • Gori, F., 1983. A theoretical model for predicting the effective thermal conductivity of unsaturated frozen soils. In Proceedings of the 4th International Conference on Permafrost. Fairbanks, Alaska, Washington, National Academy Press, pp. 363–368.

    Google Scholar 

  • Hardy, M., 1992. X-ray diffraction measurement of the quartz content of clay and silt fractions in soils. Clay Minerals, 27, 47–55.

    CAS  Google Scholar 

  • Horton, R., and Wierenga, P. J., 1984. The effect of column wetting on soil thermal conductivity. Soil Science, 138(2), 102–108.

    Google Scholar 

  • Johansen, O., 1975. Thermal Conductivity of Soils, Ph.D. thesis, Trondheim, Norway (CRREL Draft Translation 637, 1977, ADA 044002).

    Google Scholar 

  • Karathanasis, A. D., and Harris, W. G., 1994. Quantitative thermal analysis of soil materials. In Amonette, J. E., and Zelazny, L. W. (eds.), Quantitative Methods in Soil Mineralogy. Madison: SSSA Misc. Publ. SSSA, pp. 360–429.

    Google Scholar 

  • Kersten, M. S., 1949. Thermal Properties of Soils. Bulletin No. 28, University of Minnesota Engineering Experiment Station, LII (21).

    Google Scholar 

  • Lu, S., Ren, T., Gong, Y., and Horton, R., 2007. An improved model for predicting thermal conductivity from water content at room temperature. Soil Science Society of America Journal, 71(1), 8–14.

    CAS  Google Scholar 

  • McInnes, K., 1981. Thermal Conductivities of Soils from Dry Land Wheat Regions in Eastern Washington. MS thesis, Pullman, WA, Washington State University.

    Google Scholar 

  • Noborio, K., McInnes, K. J., and Heilman, J. L., 1996. Two-dimensional model for water heat, and solute transport in furrow-irrigated soil: II. Field evaluation. Soil Science Society of America Journal, 60, 1001–1009.

    CAS  Google Scholar 

  • Peters-Lidard, C. D., Blackburn, E., Liang, X., and Wood, E. F., 1998. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. Journal of Atmospheric Science, 55(7), 1209–1224.

    Google Scholar 

  • Purushothamaraj, P., and Judge, A., 1977. Thermal Conductivity of Soil Solids. Unpublished paper from the Earth Physics Branch, Canada, National Research Council.

    Google Scholar 

  • Rowse, J. B., and Jepson, W. B., 1972. The determination of quartz in clay minerals. Journal of Thermal Analysis, 4, 1969–1975.

    Google Scholar 

  • Sengers, J. V., and Watson, J. T. R., 1986. Improved international formulations for the viscosity and thermal conductivity of water and steam. Journal of Physical and Chemical Reference Data, 15, 1291–1314.

    CAS  Google Scholar 

  • Tarnawski, V. R., Momose, T., and Leong, W. H., 2009a. Assessing the impact of quartz content on the prediction of soil thermal conductivity. Géotechnique, 59(4), 331–338.

    Google Scholar 

  • Tarnawski, V. R., Momose, T., Leong, W. H., Bovesecchi, G., and Coppa, P., 2009b. Thermal conductivity of standard sands. Part I. Dry state conditions. International Journal of Thermophysics, 30, 949–968.

    CAS  Google Scholar 

  • Tehrani, J. M., 1978. Measurement of Thermal Conductivity of Soils. MS thesis, Minneapolis, MN, University of Minnesota.

    Google Scholar 

  • Woodside, M., and Messmer, J. M., 1961. Thermal conductivity of porous media. Journal of Applied Physics, 32(9), 1688–1706.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlodek R. Tarnawski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Tarnawski, V.R., Momose, T., Leong, W.H., Piper, D.J.W. (2011). Estimation of Quartz Content in Mineral Soils. In: Gliński, J., Horabik, J., Lipiec, J. (eds) Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3585-1_130

Download citation

Publish with us

Policies and ethics