Skip to main content

Cenozoic Environmental Shifts and Foraminiferal Evolution

  • Chapter

Part of the book series: International Year of Planet Earth ((IYPE))

Abstract

The dense record of Cenozoic foraminifera simultaneously supplies a mosaic of biostratigraphy, a rich field for evolutionary studies and the vehicles for geochemical environmental proxies. Four groups are discussed: the larger foraminifera on the warm-water shelves and platforms, the planktonics, the deep-sea faunas and the southern-extratropical benthics. The environmental trajectory from greenhouse in the later Cretaceous and earlier Paleogene to icehouse in the Neogene is not smooth but punctuated, and there are two particularly critical intervals, later Eocene and early-middle Miocene. The foraminiferal record is not smooth but chunky at 107 years’ scale. There are several good examples of two powerful synchroneities, one being between the faunas of the different realms and the other between the fossil record and the physical-environmental record.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abels HA, Hilgen FJ, Krijgsman W, Kruk RW, Raffi I, Turco E, Zachariasse WJ (2005) Long-period orbital control on middle Miocene global cooling: integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta. Paleoceanography 20:PA4012. doi:10.1029/2004PA001129

    Google Scholar 

  • Abreu VS, Hardenbol J, Haddad GA, Baum GR, Droxler AW, Vail PR (1998) Oxygen isotope synthesis: a Cretaceous ice-house? In:de Graciansky P-C, Hardenbol J, Jacquin T, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins. SEPM (Soc Sedimentary Geol), Spec Pub No. 60, pp 75–80

    Google Scholar 

  • Adams CG (1970) A reconsideration of the East Indies Letter Classification of the Tertiary. Bull Br Mus (Nat Hist), London 19:87–137

    Google Scholar 

  • Adams CG (1983) Speciation, phylogenesis, tectonism, climate and eustasy: factors in the evolution of Cenozoic larger foraminiferal bioprovinces. In: Sims RW, Price JH, Whalley PES (eds) Evolution time and space: the emergence of the biosphere. Systematics Assoc Spec, vol 23. Academic, London, pp 255–289

    Google Scholar 

  • Adams, CG (1984) Neogene larger foraminifera, evolutionary and geological events in the context of datum planes. In: Ikebe N, Tsuchi R (eds) Pacific Neogene datum planes. University of Tokyo Press, Tokyo, pp 47–67

    Google Scholar 

  • Alroy J (1994) Appearance event ordination: a new biochronological method. Paleobiology 20:191–207

    Google Scholar 

  • Aubry M-P, Berggren WA, Van Couvering JA, McGowran B, Hilgen F, Steininger F, Lourens L (2009) The Neogene and Quaternary: chronostratigraphic compromise or non-overlapping magisteria? Stratigraphy 6:1–16

    Google Scholar 

  • Barbieri R, Benjamini C, Monechi S, Reale V (2003) Stratigraphy and benthic foraminiferal events across the Middle–Late Eocene transition in Western Negev, Israel. In: Prothero DR, Ivany LC, Nesbitt EA (eds) From greenhouse to icehouse: the marine Eocene–Oligocene transition. Ch 26. Columbia University Press, New York, pp 453–470

    Google Scholar 

  • Berger WH, Wefer G (1996) Expeditions into the past: paleoceanographic studies in the South Atlantic. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds), The South Atlantic: present and past circulation. Springer-Verlag, Berlin, pp 363–410

    Google Scholar 

  • Berggren WA, Miller KG (1989) Cenozoic bathyal and abyssal calcareous benthic foraminiferal zonation. Micropaleontology 35:308–320

    Google Scholar 

  • Berggren WA, Pearson PN (2005) A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. J Foraminiferal Res 35:279–298

    Google Scholar 

  • Blow WH (1959) Age, correlation and biostratigraphy of the Upper Tocuyo (San Lorenzo) and Pozón formations eastern Falcón, Venezuela. Bull Am Paleontol 39:1–251

    Google Scholar 

  • Bohaty SM, Zachos JC, Florindo F, Delaney ML (2009) Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography 24:PA2207. doi:10.1029/2008PA001676

    Google Scholar 

  • Bolli HM (1957) The genera Globigerina and Globorotalia in the Paleocene–lower Eocene Lizard Springs Formation of Trinidad, B.W.I. United States. Nat Mus, Bull 215:51–81

    Google Scholar 

  • Boudagher-Fadel MK, Banner FT (1999) Revision of the stratigraphic significance of the Oligo-Miocene “letter-stages”. Revue de Micropaléontologie 42:93–97

    Google Scholar 

  • Boudagher-Fadel MK, Lokier SW (2005) Significant Miocene larger foraminifera from south central Java. Revue de Paléobiologie 24:291–309

    Google Scholar 

  • Buzas MA, Culver SJ (1999) Understanding regional species diversity through the log series distribution of occurrences. Diversity Distribution 8:187–195

    Google Scholar 

  • Buzas MA, Collins LS, Culver SJ (2002) Latitudinal difference in biodiversity caused by higher tropical rate of increase. Proc Natl Acad Sci USA 99:7841–7843

    Google Scholar 

  • Carpenter WB, Parker WK, Jones TR (1862) Introduction to the study of the foraminifera. The Ray Society, London

    Google Scholar 

  • Cifelli R (1990) A history of the classification of the foraminifera (1826–1933). Part I, Foraminiferal classification from d’Orbigny to Galloway. Cushman Foundation Foraminiferal Res, Spec Pub 27:1–88

    Google Scholar 

  • Corliss BH (1981) Deep-sea benthic foraminiferal faunal turnover near the Eocene/Oligocene boundary. Mar Micropaleontol 6:367–384. doi:10.1016/0377–8398(81)90007–4

    Google Scholar 

  • Culver SJ (2003 Benthic foraminifera across the Cretaceous–Tertiary (K–T) boundary: a review. Mar Micropaleontol 47:177–226

    Google Scholar 

  • Cushman JA (1940) Foraminifera, their classification and economic use. Harvard University Press, Boston

    Google Scholar 

  • Cushman JA, Stainforth RM (1945) The foraminifera of the Cipero Marl Formation of Trinidad, British West Indies. Cushman Lab Foraminiferal Res, Spec Pub 14:1–74

    Google Scholar 

  • Darling K, Wade CM (2008) The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar Micropaleontol 67:216–238

    Google Scholar 

  • Darling KF, Kucera M, Wade CM (2007) Global molecular phylogeography reveals persistent Arctic circumpolar isolation in a marine planktonic protist. PNAS 104:5003–5004

    Google Scholar 

  • Darling KF, Thomas E, Kasemann SA, Seears HA, Smart CW, Wade CM (2009) Surviving mass extinction by bridging the benthic/planktic divide. PNAS 106:12629–12633

    Google Scholar 

  • Darwin C (1859) On the origin of species [Facsimile of first edition, 1859, ed. E. Mayr (1964)]. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Davies AM (1934) Tertiary faunas: a text-book for oilfield palaeontologists and students of geology. Thomas Murby, London, 1934–35 [v 1, 1935], v 2

    Google Scholar 

  • De Vargas C, Saez AG, Medlin LK, Thierstein HR (2004) Superspecies in the calcareous plankton. In: Thierstein HR, Young JR (eds) Coccolithophores: from molecular processes to global impact. Springer, Berlin, pp 271–298

    Google Scholar 

  • d’Hondt S (2005) Consequence of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu Rev Ecol Syst 36:295–317

    Google Scholar 

  • d’Hondt S, Zachos JC (1998) Cretaceous foraminifera and the evolutionary history of planktic photosymbiosis. Paleobiology 24:512–523

    Google Scholar 

  • Drooger CW (1993) Radial foraminifera: morphometrics and evolution. North-Holland, Amsterdam, New York, 242p

    Google Scholar 

  • Gignoux M (1955) Stratigraphic geology (English translation by GG Woodford of the 1950 French edition of “Géologie Stratigraphique”). WH Freeman, San Francisco, 682pp

    Google Scholar 

  • Glaessner MF (1937) Planktonforaminiferen aus der Kreide und dem Eozän und ihre stratigraphische Bedeutung. Studies in Micropaleontol 1 (Moscow, 1937):27–52

    Google Scholar 

  • Glaessner MF (1945) Principles of micropalaeontology. Melbourne University Press, Melbourne, 296p

    Google Scholar 

  • Guex, J (1991) Biochronological correlations. Springer-Verlag, Berlin

    Google Scholar 

  • Hallock P (1987) Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography 2:457–471

    Google Scholar 

  • Hallock P (1999) Symbiont-bearing foraminifera. In: Sen Gupta BK (ed) Modern foraminifera. Kluwer Academic, Dordrecht, pp 123–139

    Google Scholar 

  • Hallock P, Premoli Silva I, Boersma A (1991) Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes. Palaeogeogr Palaeoclimatol Palaeoecol 83:49–64

    Google Scholar 

  • Hardenbol J, Thierry J, Farley MB, Jacquin T, de Graciansky P-C, Vail PR (1998) Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: de Graciansky P-C, Hardenbol J, Jacquin T, Vail PR (eds), Mesozoic and Cenozoic sequence stratigraphy of European basins. SEPM (Society of Sedimentary Geology) Special Publication 60:3–13, Tulsa

    Google Scholar 

  • Hayward BW (2001) Global deep-sea extinctions during the Pleistocene ice ages. Geology 29:599–602. doi:10.1130/00917613(2001)029<0599:GDSEDT>2.0.CO;2

    Google Scholar 

  • Hayward BW (2002) Late Pliocene to Middle Pleistocene extinctions of deep-sea benthic foraminifera (“Stilostomella extinction”) in the southwest Pacific. J Foraminiferal Res 32:274–307. doi:10.2113/32.3.274

    Google Scholar 

  • Hayward BW, Kawagata S, Grenfell HR, Sabaa AT, O’Neill T (2007) Last global extinction in the deep sea during the mid-Pleistocene climate transition. Paleoceanography 22:PA3103. doi:10.1029/2007PA001424

    Google Scholar 

  • Hohenegger J (2000) Coenoclines of larger foraminifera. Micropaleontology 46(Suppl 1):127–151

    Google Scholar 

  • Hok TS (1939) The results of phylomorphogenetic studies of some larger Foraminifera (a review). Mijnbouw en Geologie 6:93–97

    Google Scholar 

  • Hottinger L (1960) Recherches sur les Alvéolines du Paléocène et de l’Eocène. Mém. Suisses Paléontol 75/76:1–243

    Google Scholar 

  • Hottinger L (1981) The resolution power of the biostratigraphic clock based on evolution and its limits. International Symposium on Concepts and Methods in Palaeontology, Universidad Barcelona, Barcelona, pp 233–242

    Google Scholar 

  • Hottinger L (1982) Larger foraminifera, giant cells with a historical background. Naturwissenschaft 69:361–371

    Google Scholar 

  • Hottinger L (1983) Processes determining the distribution of larger foraminifera in space and time. Utrecht Micropaleontol Bull 30:239–253

    Google Scholar 

  • Hottinger L (1987) Conditions for generating carbonate platforms. Mem Soc Geol Italy 40:265–271

    Google Scholar 

  • Hottinger L (1988) Significance of diversity in shallow benthic foraminifera. Atti del Quarto Simposio Ecologia e Paleoecologia Communità Benthonice, Sorrento, 1–5 November 1988. Museo Regionale di Scienze Natural—Torino, pp 35–51

    Google Scholar 

  • Hottinger L (1996) Sels nutritifs et biosédimentation. Mémoir de la Societé géologique de France, n.s., 169:99–107

    Google Scholar 

  • Hottinger L (1997) Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bull de la Societé géologique de France, t 168(4):491–505

    Google Scholar 

  • Hottinger L (1998) Shallow benthic foraminifera at the Paleocene–Eocene boundary. Strata 9:61–64

    Google Scholar 

  • Hottinger L (1999) “Odd partnership”, a particular size relationship between close species of larger foraminifera, with an emendation of an outstandingly odd partner, Glomalveolina delicatissima (Smout, 1954), Middle Eocene. Eclogae geologicae Helvetiiae 92:385–393

    Google Scholar 

  • Hottinger L (2000) Adaptations of the foraminiferal cell to life in shallow carbonate environments. Acad Naz Sci Lett Arti di Modena, Collana di Studi 21:135–140

    Google Scholar 

  • Hottinger L (2001) Learning from the past. In: Levi-Montalcini L (ed) Frontiers of life. Discovery and spoliation of the biosphere, vol 4(2). Academic, London and San Diego, pp 449–477

    Google Scholar 

  • Huber BT, Olsson RK, Pearson PN (2006) Chapter 16: Taxonomy, biostratigraphy and phylogeny of Eocene microperforate planktonic foraminifera (Jenkinsina, Cassigerinelloita, Chiloguembelina, Streptochilus, Zeauvigerina, Tenuitella, and Cassigerinella) and problematica (Dipsidripella). In: Pearson PN, Olsson RK, Huber BT, Hemleben C, Berggren WA (eds) Atlas of Eocene planktonic foraminifera. Cushman Foundation Special Publications, vol 41, Washington, DC, pp 461–508

    Google Scholar 

  • Hull D (1988) Science as a process: an evolutionary account of the social and conceptual development of science. University of Chicago Press, Chicago, 583pp

    Google Scholar 

  • Kelly DC, Bralower TJ, Zachos JC, Premoli Silva I, Thomas E (1996) Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology 24:423–426

    Google Scholar 

  • Langer MR, Hottinger L (2000) Biogeography of selected “larger” foraminifera. Micropaleontology 46(Suppl 1):105–126

    Google Scholar 

  • Leckie RM (2009) Seeking a better life in the plankton. PNAS 106:14183–14184. doi: 10.1073/pnas.0907091106

    Google Scholar 

  • Li Q, McGowran B (1996) Early Paleocene Parvularugoglobigerina and late Eocene Praetenuitella: evolutionary convergence implies similar habitat? J Micropalaeontol 14:119–134

    Google Scholar 

  • Li Q, McGowran B (1997) Miocene climatic oscillations recorded in the Lakes Entrance oil shaft, southeastern Australia: benthic foraminiferal response on a mid-latitude margin. Micropaleontology 43:149–164

    Google Scholar 

  • Li Q, McGowran B (2000) The Miocene foraminifera from Lakes Entrance Oil Shaft, southeastern Australia. Assoc Aust Palaeontols, Mem 22:142

    Google Scholar 

  • Li Q, Zhong G, Tian J (2009) Chapter 3: Stratigraphy and sea level changes. In: Wang P, Li Q (eds) The South China Sea. Developments in paleoenvironmental Research, vol 13, pp 75–170. doi:10.1007/978–1–4020–9745–4_3

    Google Scholar 

  • Lipps JH (1970) Plankton evolution. Evolution 24:1–22

    Google Scholar 

  • Lipps JH (1981) What, if anything, is micropaleontology? Paleobiology 7:167–199

    Google Scholar 

  • Lyell C (1871) Students elements of geology. John Murray, London

    Google Scholar 

  • Lyle M, Pälicke H, Nishi H, Raffi I, Gamage K, Klaus A, the IODP Expeditions 320/321 Scientific Party (2010) The Pacific equatorial age transect, IODP Expeditions 320 and 321: building a 50-million-year-long environmental record of the equatorial Pacific. Sci Drilling 9:4–15. doi:10.2204/iodp.sd.9.01.2010

    Google Scholar 

  • Mayr E, Provine WB (1980) The evolutionary synthesis. Harvard University Press, Cambridge

    Google Scholar 

  • McGowran B (1979) The Australian Tertiary: foraminiferal overview. Mar Micropaleontol 4:235–264

    Google Scholar 

  • McGowran B (2005) Biostratigraphy: microfossils and geological time. Cambridge University Press, Cambridge, 459pp

    Google Scholar 

  • McGowran B (2009) The Australo-Antarctic Gulf and the Auversian facies shift. In: Koeberl C, Montanari A (eds) The Late Eocene Earth—hothouse, icehouse, and impacts. Geological Society of American Special Paper 452, Ch 14, Boulder, CO, pp 215–240. doi:10.1130/2009.2452(14)

    Google Scholar 

  • McGowran B, Li Q (1996) Ecostratigraphy and sequence biostratigraphy, with a neritic foraminiferal example from the Miocene in southern Australia. Hist Biol 11:137–169

    Google Scholar 

  • McGowran B, Li Q (2000) Evolutionary palaeoecology of Cainozoic foraminifera: Tethys, IndoPacific, southern Australasia. Hist Biol 15:3–28

    Google Scholar 

  • McGowran B, Li Q (2007) Stratigraphy: gateway to geohistory and biohistory. Stratigraphy 4:173–185

    Google Scholar 

  • Miller KG, Katz ME, Berggren WA (1992) Cenozoic deep-sea benthic foraminifera: a tale of three turnovers. In: Takayanagi Y, Saito T (eds) Studies in benthic foraminifera: proceedings of the fourth international symposium on Benthic Foraminifera, Sendai, 1990 (Benthos ‘90), Tokai University Press, Tokyo, pp 245–248

    Google Scholar 

  • Moss G, McGowran B (2003) Oligocene neritic foraminifera in Southern Australia: spatiotemporal biotic patterns reflect sequence-stratigraphic environmental patterns. In: Olson H, Leckie M (eds) Paleobiological, geochemical, and other proxies of sea level change. SEPM (Society of Sedimentary Geology) special volume 75. Tulsa, pp 117–138

    Google Scholar 

  • Murray J, Hjort J (1912) The ocean: a general account of the science of the sea. Williams & Norgate, London

    Google Scholar 

  • Nebelsick JH, Rasser MW, Bassi D (2005) Facies dynamics in Eocene to Oligocene circumalpine carbonates. Facies 51:197–216

    Google Scholar 

  • Norris RD (1991) Parallel evolution in the keel structure of planktonic foraminifera. J Foraminiferal Res 21:319–331

    Google Scholar 

  • Norris RD (1996) Symbiosis as an evolutionary innovation in the radiation of Paleocene planktonic foraminifera. Paleobiology 22:461–480

    Google Scholar 

  • Norris RD, Wilson PA (1998) Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera. Geology 26:823–826

    Google Scholar 

  • Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Palaeogene. Science 309:600–603

    Google Scholar 

  • Pawlowski J, Fahrnis J, Lecroq B, Longet G, Cornelius N, Excoffier L, Cedhagen T, Gooday AJ (2007) Bipolar gene flow in deep-sea benthic foraminifera. Mol Ecol 16:4089–4096

    Google Scholar 

  • Pearson PN (1998) Stable isotopes and the study of evolution in planktonic foraminifera. Paleontol Soc Pap 4:138–178

    Google Scholar 

  • Pearson PN, Olsson RK, Huber BT, Hemleben C, Berggren WA (eds) (2006a) Atlas of Eocene planktonic foraminifera: Fredericksburg, Cushman Foundation Foraminiferal Res, Spec Publ No. 41, 514pp

    Google Scholar 

  • Pearson PN, Olsson RK, Huber BT, Hemleben C, Berggren WA, Coxall HK (2006b) Chapter 1: Overview of Eocene planktonic foraminiferal taxonomy, paleoecology, phylogeny, and biostratigraphy. In: Pearson et al. (2006a), pp 11–28

    Google Scholar 

  • Prothero DR (2004) Did impacts, volcanic eruptions, or climate change affect mammalian evolution? Palaeogeogr Palaeoclimatol Palaeoecol 214:283–294

    Google Scholar 

  • Pujalte V, Schmitz B, Baceta JI, Orue-Etxebarria X, Bernaola G, Dinares-Turell J, Payros A, Apellaniz E, Caballero F (2009) Correlation of the Thanetian–Ilerdian turnover of larger foraminifera and the Paleocene–Eocene thermal maximum: confirming evidence form the Campo area (Pyrenees, Spain). Geol Acta 7:161–175. doi:10.1344/105.000000276

    Google Scholar 

  • Reichel M (1937) Étude sur les Alvéolines. Mém Suisses Paléontol 57 et 59:1–147

    Google Scholar 

  • Reiss Z, Hottinger L (1984) The Gulf of Aquaba: ecological micropaleontology. Springer, New York

    Google Scholar 

  • Renema W (2002) Larger foraminifera as marine environmental indicators. Scr Geol 124:263pp

    Google Scholar 

  • Renema W (2007) Faunal development of larger benthic foraminifera in the Cenozoic of southeast Asia. In: Renema W (ed) Biogeography, time, and place: distributions, barriers, and islands. Topics in geobiology, vol 29, Ch 6. Springer, Netherlands, pp 179–215

    Google Scholar 

  • Schiebel R, Hemleben C (2005) Modern planktic foraminifera. Paläontologische Zeitschrift 79:135–148

    Google Scholar 

  • Schmidt DN, Lazarus D, Young JR, Kucera M (2006) Biogeography and body size in marine plankton. Earth-Sci Rev 78:239–266

    Google Scholar 

  • Serra-Kiel J, Hottinger L, Caus E, Drobne K, Ferràndez C, Jauhri AK, Less G, Pavlovec R, Pignatti J, Samso JM, Schaub H, Sire E., Strougo, Tambareau Y, Tosquella J, Zakrevskaya E (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bull Société Géologique France 169:281–299

    Google Scholar 

  • Sexton PF, Norris RD (2008) Dispersal and biogeography of marine plankton: long-distance dispersal of the foraminifer. Geology 36:899–902. doi:10.1130/G25232A.1

    Google Scholar 

  • Sexton PF, Wilson PA, Pearson PN (2006) Palaeoecology of late middle Eocene planktic foraminifera and evolutionary implications. Mar Micropaleontol 60:1–16

    Google Scholar 

  • Smocovitis VB (1996) Unifying biology: the evolutionary synthesis and evolutionary biology. Princeton University Press, Princeton, 248pp

    Google Scholar 

  • Subbotina NN (1953) [Globigerinidae, Hantkeninidae, and Globorotaliidae. Fossil foraminifera of the U.S.S.R.] Vses. Neft. Nauchno-Issled. Geol-Razved Inst (VNIGRI), Trudy, ns 6:1–296

    Google Scholar 

  • Thomas E (1992) Middle Eocene-late Oligocene bathyal benthic foraminifera (Weddell Sea): faunal changes and implications for ocean circulation. In: Prothero DR, Berggren WA (eds) Eocene–Oligocene climatic and biotic evolution. Princeton Univ Press, Princeton, pp 245–271

    Google Scholar 

  • Thomas E (1998) The biogeography of the late Paleocene benthic foraminiferal extinction. In: Aubry M-P, Lucas S, Berggren WA (eds) Late Paleocene–Early Eocene climatic and biotic events in the marine and terrestrial records. Columbia University Press, New York, pp 214–243

    Google Scholar 

  • Thomas E (2007) Cenozoic mass extinctions in the deep sea: what perturbs the largest habitat on Earth? Geol Soc Am, Spec Pap 424:1–23. doi:10.11.30/2007.2424(01)

    Google Scholar 

  • Thomas E, Gooday AJ (1996) Deep-sea benthic foraminifera: tracers for Cenozoic changes in oceanic productivity? Geology 24:355–358. doi:10.11.30/0091–7613(1996)024<0355:CDSBFT>2.3.co;2

    Google Scholar 

  • Thomas E, Vincent E (1987) Equatorial Pacific deep-sea benthic foraminifera: faunal changes before the Middle Miocene polar cooling. Geology 15:1035–1039

    Google Scholar 

  • Tripati A, Backman J, Elderfield H, Ferretti P (2005) Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436:341–346

    Google Scholar 

  • Ujiié Y, Kimoto K, Pawlowski J (2008) Molecular evidence for an independent origin of modern triserial planktonic foraminifera from benthic ancestors. Mar Micropaleontol 69:334–340

    Google Scholar 

  • van Andel TJH, Heath GR, Moore TC Jr (1975) Cenozoic history and paleoceanography of the central Pacific Ocean. Geol Soc Am Mem 143:1–134

    Google Scholar 

  • van Dam JA, Aziz HA, Sierra MAA, Hilgen FJ, van den Hoek Ostende LW, Lourens, LJ, Mein P, van der Meulen AJ, Pelaez-Campomanes P (2006) Long-period astronomical forcing of mammal turnover. Nature 443:687–691

    Google Scholar 

  • Van der Vlerk IM (1959) Problems and principles of Tertiary and Quaternary stratigraphy. Q J Geol Soc London 115:49–63

    Google Scholar 

  • Webb SD (1984) On two kinds of rapid faunal turnover. In: Berggren WA, van Couvering JA (eds) Catastrophes and earth history. Princeton University Press, Princeton, pp 417–436

    Google Scholar 

  • Woodburne MO (ed) (2004) Late Cretaceous and Cenozoic mammals of North America: biostratigraphy and geochronology. Columbia University Press, New York, 391pp

    Google Scholar 

  • Woodburne MO (2007) Mammal ages. Stratigraphy 3(2006):229–261

    Google Scholar 

  • Woodburne M, Swisher C (1995) Mammal high-resolution geochronology, intercontinental overland dispersals, sea level, climate and vicariance. In: Berggren WA, Kent DV, Aubry M-P, Hardenbol J (eds) Geochronology time scales and global stratigraphic correlation. SEPM (Society of Sedimentary Geology) Special Publications, vol 54. Tulsa, pp 335–364

    Google Scholar 

  • Wright JD, Miller KG (1993) Southern Ocean influences on late Eocene to Miocene deepwater circulation. In: Kennett JP, Warnke DA (eds), The Antarctic Paleoenvironment: a perspective on global change. Antarctic Research Series, Part Two, American Geophysical Union, Washington, DC, pp 601–625

    Google Scholar 

  • Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686–693

    Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283. doi:10.1038/nature06588

    Google Scholar 

Download references

Ackowledgments

I thank Qianyu Li and Paul Pearson for critically reading the manuscript and the editor, John Talent, for initiating the project, inviting the contribution, and steadfastly displaying patience and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian McGowran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

McGowran, B. (2012). Cenozoic Environmental Shifts and Foraminiferal Evolution. In: Talent, J.A. (eds) Earth and Life. International Year of Planet Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3428-1_33

Download citation

Publish with us

Policies and ethics