Skip to main content

Applications of TRMM-Based Multi-Satellite Precipitation Estimation for Global Runoff Prediction: Prototyping a Global Flood Modeling System

  • Chapter
  • First Online:
Satellite Rainfall Applications for Surface Hydrology

Abstract

To offer a cost-effective solution to the ultimate challenge of building flood alert systems for the data-sparse regions of the world, this chapter describes a modular-structured Global Flood Monitoring (GFM) framework that incorporates satellite-based near real-time rainfall flux into a cost-effective hydrological model for flood modeling quasi-globally. This framework includes four major components: TRMM-based real-time precipitation, a global land surface database, a distributed hydrological model, and an open-access web interface. Retrospective simulations for 1998–2006 demonstrate that the GFM performs consistently at catchment levels. The interactive GFM website shows close-up maps of the flood risks overlaid on topography/population or integrated with the Google-Earth visualization tool. One additional capability, which extends forecast lead-time by assimilating QPF into the GFM, also will be implemented in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Refernces

  • Adler, R.F., G.J., Huffman, A. Chang, R. Ferraro, P.-P. Xie, J. Yanowiak, B. Rufolf, U. Scheider, S. Curtis, D. Bolvin, A. Bruber, J. Susskind, P. Arkin, and E. Nelkin, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–Present). Journal of Hydrometeorology, 4, 1147–1167.

    Article  Google Scholar 

  • Arquivo do Patrimonio Cultural (ARPAC), 2000: Cheias e Conhecimento Indigina na Bacia do Limpopo, Maputo, Mozambique: ARPAC.

    Google Scholar 

  • Artan, G., J. Verdin, and K. Asante, 2001: A wide-area flood risk monitoring model. In Fifth International Workshop on Application of Remote Sensing in Hydrology. Montpellier, France: UNESCO/IAHS.

    Google Scholar 

  • Asante, K.O., R.M. Dezanove, G. Artan, R. Lietzow, and J. Verdin, 2007: Developing a flood monitoring system from remotely sensed data for the Limpopo Basin, IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1709–1714.

    Article  Google Scholar 

  • Beven, K.J. and M.J. Kirkby, 1979: A physically-based variable contributing area model of basin hydrology, Hydrological Sciences Journal, 24(1), 43–69.

    Article  Google Scholar 

  • Biemans H., R. Hutjes , P. Kabat, B. Strengers, and D. Gerten (2009) Impacts of precipitation uncertainty on discharge calculations for main river basins. Journal of Hydrometeorology (In Press).

    Google Scholar 

  • Brakenridge, G.R., Nghiem, S.V., Anderson, E., and Chien, S., 2005, Space-based measurement of river runoff. EOS Transactions of the American Geophysical Union, 86(19), 185–188.

    Article  Google Scholar 

  • Bhaduri, B., J. Harbor, B.A. Engel, and M. Grove, 2000: Assessing watershed-scale, long-term hydrologic impacts of land-use change using a GIS-NPS model, Environmental Management, 26(6), 643–658.

    Article  Google Scholar 

  • Burgess, S.S.O., M.A. Adams, N.C. Turner, and C.K. Ong, 1998: Redistribution of water within plant root system, Oecologia, 115, 306–311.

    Article  Google Scholar 

  • Chen, F.,K. Mitchell, J.C. Schaake, Y. Xue, H.-L. Pan, V. Koren, Q.Y. Duan, M. Ek, and A. Betts, 1996: Modeling of land-surface evaporation by four schemes and comparison with FIFE observations, Journal of Geophysical Research, 101, 7251–7268.

    Article  Google Scholar 

  • Choi, J.Y., B.A. Engel, and H.W. Chung, 2002: Daily streamflow modeling and assessment based on the curve-number technique, Hydrological Processes, 16, 313–3150

    Article  Google Scholar 

  • Coe, M.T., 2000: Modeling terrestrial hydrological systems at the continental scale: testing the accuracy of an atmospheric GCM, Journal of Climate, 13, 686–704.

    Article  Google Scholar 

  • DHI (Danish Hydraulic Institute), 1999: MIKE 21 User Guide and Reference Manual, Hørsholm, Denmark.

    Google Scholar 

  • Duan, Q., H. V. Gupta, S. Sorooshian, A. N. Rousseau, R. Turcotte, (Eds.), 2003: Calibration of watershed models, AGU Water Science and Application, Vol. 6, American Geophysical Union, Washington, DC.

    Google Scholar 

  • Engel, B.A., 1997: “GIS-based CN Runoff Estimation”, Agricultural and Biological Engineering Departmental Report, Purdue University.

    Google Scholar 

  • FAO, 2001: Food and Agriculture Organization Foodcrops and Shortages, Report #1

    Google Scholar 

  • Fekete, B.M., C.J. Vorosmarty, and W. Grabs, 2000: Global Composite Runoff Data Set (v1.0), Complex Systems Research Center, University of New Hampshire, Durham, New Hampshire, USA. Available online at http://www.grdc.sr.unh.edu/

  • Friedl, M.A., D.K. McIver, J.C.F. Hodges, X.Y. Zhang, D. Muchoney, A.H. Strahler, C.E. Woodcock, S. Gopal, A. Schneider, A. Cooper, A. Baccini, F. Gao, and C. Schaaf, 2002: Global land cover mapping from MODIS: algorithms and early results, Remote Sensing of Environment 83(1–2), 287–302.

    Article  Google Scholar 

  • Hawkins, R.H., 1993: Asymptotic determination of runoff curve numbers from data. Journal of Irrigation and Drainage Engineering. American Society of Civil Engineers, 119(2), 334–345.

    Article  Google Scholar 

  • Harbor, J., 1994: A practical method for estimating the impact of land-use change on surface runoff, groundwater recharge, and wetland hydrology, Journal of the American Planning Association, 60(1), 95–108.

    Article  Google Scholar 

  • Harris, A., F. Hossain, 2008: Investigating optimal configuration of conceptual hydrologic models for satellite rainfall-based flood prediction for a small watershed, IEEE Geosciences and Remote Sensing Letters, 5(3).

    Google Scholar 

  • Heaney, J.P., 2001: Long-term experimental watersheds and urban stormwater management, Water Resources Impact, 3(6), 20–23.

    Google Scholar 

  • Heggen, R.J., 2001: Normalized antecedent precipitation index, Journal of Hydrologic Engineering, 6(5), 377–381.

    Article  Google Scholar 

  • Hong, Y., K.-L. Hsu, X. Gao, and S. Sorooshian, 2004: Precipitation estimation from remotely sensed imagery using artificial neural network – cloud classification system, Journal of Applied Meteorology, 43(12), 1834–1853.

    Article  Google Scholar 

  • Hong, Y., K.-L. Hsu, H. Moradkhani, and S. Sorooshian, 2006: Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response, Water Resources Research, 42(8), W08421, 10.1029/2005WR004398

    Article  Google Scholar 

  • Hong, Y, R.F. Adler, A. Negri, and G.J. Huffman, 2007a: Flood and landslide applications of near real-time satellite rainfall estimation, Journal of Natural Hazards, 43(2), DOI: 10.1007/s11069-006-9106-x.

    Google Scholar 

  • Hong, Y., R.F. Adler, F. Hossain, S. Curtis, and G.J. Huffman 2007b, A first approach to global runoff simulation using satellite rainfall estimation, Water Resources Research, 43(8), W08502, doi: 10.1029/2006WR005739.

    Article  Google Scholar 

  • Hong, Y and R.F. Adler, 2008, Estimation of Global NRCS-CN (Natural resource conservation service curve numbers), International Journal of Remote Sensing, 29(2), 471–477, DOI: 10.1080/01431160701264292.

    Article  Google Scholar 

  • Hossain, F. and E.N. Anagnostou, 2006: Assessment of a multi-dimensional satellite rainfall error model for ensemble generation of satellite rainfall data, IEEE Geosciences and Remote Sensing Letters, 3(3), 419–423, doi: 10.1109/LGRS.2006.873686.

    Google Scholar 

  • Hossain, F. and D.P. Lettenmaier 2006. Flood prediction in the future: recognizing hydrologic issues in anticipation of the Global Precipitation Measurement Mission – Opinion Paper Water Resources Researchvol, 44, doi:10.1029/2006WR005202.

    Google Scholar 

  • Huffman, G.J., R.F. Adler, D.T. Bolvin, G. Gu, E.J. Nelkin, K.P. Bowman, Y. Hong, E.F. Stocker, and D.B. Wolff, 2007: The TRMM Multi-satellite Precipitation Analysis: Quasi-Global, Multi-Year, Combined-Sensor Precipitation Estimates at Fine Scale. Journal of Hydrometeorology, 8(1), 38–55.

    Article  Google Scholar 

  • Jian, G.J., S.L. Shieh, and J. McGinley, 2003: Precipitation simulation associated with Typhoon Sinlaku (2002) in Taiwan area using the LAPS diabatic initialization for MM5. Terrestrial Atmospheric and Oceanic Sciences, 14, 261–288.

    Google Scholar 

  • Joyce, R.J., J.E. Janowiak, P.A. Arkin, and P. Xie, 2004: CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487–503.

    Article  Google Scholar 

  • Kidd, C.K., D.R. Kniveton, M.C. Todd, and T.J. Bellerby, 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. Journal of Hydrometeorology, 4, 1088–1104.

    Article  Google Scholar 

  • Klemes V., 1983, Conceptualization and scale in hydrology. Journal of Hydrology. 5, 1–23.

    Article  Google Scholar 

  • Kohler, M.A. and R.K. Linsley, 1951: Predicting Runoff From Storm Rainfall. US Weather Bureau, Research Paper 34.

    Google Scholar 

  • Legates, D.R. and C.J. Willmott, 1990a: Mean seasonal and spatial variability global surface air temperature, Theoretical and Applied Climatology, 41, 11–21.

    Google Scholar 

  • Legates, D.R. and C.J. Willmott, 1990b: Mean seasonal and spatial variability in gauge-corrected, global precipitation. International Journal of Climatology, 10, 111–127.

    Google Scholar 

  • Li, L., Y. Hong, J. Wang, R. Adler, F. Policelli, S. Habib, D. Irwn, T. Korme, and L. Okello, 2009: Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa, Journal of Natural Hazards: doi 10.1007/s11069-008-9324-5.

    Google Scholar 

  • Liang, X., D.P. Lettenmaier, E.F. Wood, and S.J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models, Journal of Geophysical Research, 99(D7), 14415–14428.

    Article  Google Scholar 

  • Peters-Lidard, C.D., S.V. Kumar, Y. Tian, J.L. Eastman, and P.R. Houser, 2004: Global urban-scale land-atmosphere modeling with the land information system. Presented at the Symposium on Planning, Nowcasting, and Forecasting in the Urban Zone during the 84th Annual Meeting of the American Meteorological Society, 10–16 January 2004, Seattle, WA, USA

    Google Scholar 

  • Negri, A, N. Burkardt, J.H. Golden, J.B. Halverson, G.J. Huffman, M.C. Larson, J.A. Mcginley, R.G. Updike, J.P. Verdin, and G.F. Wieczorek, 2004: The hurricane-flood-landslide continuum, BAMS, DOI:10.1175/BAMS-86-9-1241.

    Google Scholar 

  • NEH-4 (National Engineering Handbook Section 4 Hydrology Part 630), 1997: U.S. Department of Agriculture Natural Resources Conservation Service, Washington, DC.

  • Olivera, F., J. Famiglietti, and K. Asante, 2000: Global-scale flow routing using a source-to-sink algorithm. Water Resources Research, 36, 2197–2207.

    Article  Google Scholar 

  • Rietz, P.D. and R.H. Hawkins, 2000: Effects of land use on runoff curve numbers. Watershed Management, Am. Soc. Civil Engineers. Proceedings Watershed Management Symposium, Fort Collins CO (CD ROM).

    Google Scholar 

  • Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll, 2004: The global land data assimilation system, Bulletin of the American Meteorological Society, 85(3), 381–394.

    Article  Google Scholar 

  • Scott, C., T.W. Crawford, and S.A. Lecce, 2007: A comparison of TRMM to other basin-scale estimates of rainfall during the 1999 Hurricane Floyd flood, Journal of Natural Hazards, 43(2), doi:10.1007/s11069-006-9093-y.

    Google Scholar 

  • Singh, A., 1989: Digital change detection techniques using remotely-sensed data, International Journal of Remote Sensing, 10(6), 989–1003.

    Article  Google Scholar 

  • Srinivasan, R. and J.G. Arnold, 1994: Integration of a basin-scale water quality model with GIS, Water Resources Bulletin. AWRA, 30(3), 453–462.

    Google Scholar 

  • Singh, V.P., 1995: Computer Models of Watershed Hydrology, V.P. Singh, ed., Water Resources Publications, Littleton, Co, pp. 1–22.

    Google Scholar 

  • Sorooshian, S., K-L. Hsu, X. Gao, H.V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall, Bulletin of the American Meteorological Society, 81, 2035–2046.

    Article  Google Scholar 

  • Su, F.G., Y. Hong, and D.P. Lettenmaier, 2008: Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in La Plata Basin, Journal of Hydrometeorology, 9(4), 622–640; DOI: 10.1175/2007JHM944.1.

    Article  Google Scholar 

  • Thornthwaite, C.W. and J.R. Mather, 1955: “The Water Balance,” Publications in Climatology VIII(1): 1–104, Drexel Institute of Climatology, Centerton, NJ, USA.

    Google Scholar 

  • Turk, F.J., and S.D. Miller, 2005: Toward improving estimates of remotely-sensed precipitation with MODIS/AMSR-E blended data techniques. IEEE Transactions on Geoscience and Remote Sensing, 43, 1059–1069.

    Article  Google Scholar 

  • USACE (US Army Corps of Engineers), 2000: HEC-HMS Technical Reference Manual, Hydrologic Engineering Center, Davic, CA, USA, http://www.hec.usace.army.mil/software/hec-hms/

  • USACE (US Army Corps of Engineers), 2002: HEC-HMS Application Guide, Hydrologic Engineering Center, Davis, CA; http://www.hec.usace.army.mil/software/hec-hms/

  • USDA (United States Department of Agriculture), 1986: Urban Hydrology for Small Watersheds, Technical Release No. 55, US Government Printing Office, Washington, DC.

    Google Scholar 

  • USDA-NRCS (US Department of Agriculture, Natural Resources Conservation Service), 2005: National Soil Survey Handbook, title 430-VI. Online available: http://soils.usda.gov/technical/handbook/

  • Viessman, W. and G.L. Lewis, 1996: Introduction to Hydrology, Haper Colins College Publishers, New York.

    Google Scholar 

  • Villarini, G. and W.F. Krajewski, 2007: Evaluation of the research version TMPA three-hourly 0.25 × 0.25° rainfall estimates over Oklahoma, Geophysical Research Letters, 34, L05402, doi:10.1029/2006GL029147.

    Article  Google Scholar 

  • Vörösmarty, C., C.A. Federer, and A.L. Schloss, 1998. “Potential evaporation functions compared on US watersheds: possible implications for global-scale water balance and terrestrial ecosystem modeling,” Journal of Hydrology, 207, 147–169.

    Article  Google Scholar 

  • Voisin, N., A.W. Wood, and D.P. Lettenmaier, 2008: Evaluation of precipitation products for global hydrological prediction. Journal of Hydrometeorology, 9(3), 388–407.

    Article  Google Scholar 

  • World Disasters Report, 2003: International Federation of Red Cross and Red Crescent Societies, p239.

    Google Scholar 

  • Yilmaz, K.K., R.F. Adler, Y. Hong, and H. Pierce (2008), Evaluation of a satellite-based near real-time global flood prediction system, Eos Transaction AGU, 89(53), Fall Meet. Suppl., Abstract H43G-1108, SF, CA.

    Google Scholar 

Download references

Acknowledgement

This research is carried out with support from NASA’s Precipitation Measurement Mission (PMM) and Applied Sciences program under Ramesh Kakar and Stephen Ambrose of NASA Headquarters. Partial research support is from the University of Oklahoma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hong, Y., Adler, R.F., Huffman, G.J., Pierce, H. (2010). Applications of TRMM-Based Multi-Satellite Precipitation Estimation for Global Runoff Prediction: Prototyping a Global Flood Modeling System. In: Gebremichael, M., Hossain, F. (eds) Satellite Rainfall Applications for Surface Hydrology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2915-7_15

Download citation

Publish with us

Policies and ethics