Skip to main content

Carbon Fluxes of Coral Reefs

  • Reference work entry
Encyclopedia of Modern Coral Reefs

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Carbon dynamics

Definition

The carbon fluxes of coral reefs are the rates of carbon exchange between sea water and reef organisms, communities, and habitats. They characterize key biochemical processes such as photosynthesis, respiration, and calcification, as well as important biogeochemical transformations such as diagenesis and dissolution. Fluxes are reported as rates of exchange per area.

Introduction

A coral reef is a living structure that maintains itself at sea level by the combined biogenic calcification of a variety of taxa. A healthy, sustainable coral reef ecosystem is comprised of diverse communities that capture and utilize energy from sunlight, waves, and organic particles. The motivation for studying carbon fluxes of coral reefs is to delineate and characterize these rates of energy transfer in order to compare reefs with other ecosystems and to compare among reefs, and to predict responses of reefs to natural or anthropogenic perturbations.

Specific...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Andrefouet, S., and Payri, C., 2000. Scaling-up carbon and carbonate metabolism of coral reefs using in-situ data and remote sensing. Coral Reefs, 19, 259–269.

    Google Scholar 

  • Atkinson, M. J., and Cuet, P., 2009. Possible effects of ocean acidification on coral reef biogeochemistry: topics for research. Marine Ecology Progress Series, 373, 249–256.

    Google Scholar 

  • Atkinson, M. J., and Falter, J. L., 2003. Coral Reefs. In Black, K. P., and Shimmield, G. D. (eds.), Biogeochemistry of Marine Systems. Boca Raton, FL: CRC Press, pp. 40–64.

    Google Scholar 

  • Atkinson, M. J., and Grigg, R. W., 1984. Model of a coral reef ecosystem: II. Gross and net benthic primary production at French Frigate Shoals, Hawaii. Coral Reefs, 3, 13–22.

    Google Scholar 

  • Atkinson, M. J., and Smith, S. V., 1983. C:N:P ratios of benthic marine plants. Limnology and Oceanography, 28, 568–574.

    Google Scholar 

  • Ayukai, T., 1995. Retention of phytoplankton and planktonic microbes on coral reefs within the Great Barrier Reef, Australia. Coral Reefs, 14, 141–147.

    Google Scholar 

  • Boucher, G., Clavier, J., Hily, C., and Gattuso, J. P., 1998. Contributions of soft-bottoms to the community metabolism (primary production and calcification) of a barrier reef flat (Moorea, French Polynesia). Journal of Experimental Marine Biology and Ecology, 225, 269–283.

    Google Scholar 

  • Buddemeier, R. W., and Oberdorfer, J. A., 1988. Hydrogeology and hydrodynamics of coral reef pore waters. 6th International Coral Reef Symposium, Brisbane, Australia, 2, 485–490.

    Google Scholar 

  • Carpenter, R. C., and Williams, S. L., 2007. Mass Transfer of photosynthesis on coral reef algal turfs. Marine Biology, 151, 435–450.

    Google Scholar 

  • Crossland, C. J., Hatcher, B. G., and Smith, S. V., 1991. Role of coral reefs in global ocean production. Coral Reefs, 10, 55–64.

    Google Scholar 

  • Entsch, B., Boto, K. G., Sim, R. G., and Wellington, J. T., 1983. Phosphorus and nitrogen in coral reef sediments. Limnology and Oceanography, 28, 465–476.

    Google Scholar 

  • Fabricius, K. E., Yahel, G., and Genin, A., 1998. In-situ depletion of phytoplankton by an axoothanthallae soft coral. Limnology and Oceanography, 43, 354–356.

    Google Scholar 

  • Falter, J. L., and Sansone, F. J., 2000a. Hydraulic control of pore water geochemistry within the oxic-suboxic zone of a permeable sediment. Limnology and Oceanography, 45, 550–557.

    Google Scholar 

  • Falter, J. L., and Sansone, F. J., 2000b. Shallow pore water sampling in reef sediments. Coral Reefs, 19, 93–97.

    Google Scholar 

  • Falter, J. L., Atkinson, M. J., and Langdon, C., 2001. Production-respiration relationships at different time-scales within the Biosphere 2 coral reef biome. Limnology and Oceanography, 46, 1653–1660.

    Google Scholar 

  • Ferrier-Pages, C., Gattuso, J. P., Cauwet, G., Jaubert, J., and Allemand, D., 1998. Release of dissolved organic carbon and nitrogen by the zooxanthellate coral Galaxea fascicularis. Marine Ecology Progress Series, 172, 265–274.

    Google Scholar 

  • Gattuso, J.-P., Pinchon, M., Delasalle, B., and Frankignoulle, M., 1993. Community metabolism and air-sea CO2 fluxes in a coral reef ecosystem (Moorea, French Polynesia). Marine Ecological Progress Series, 96, 259–267.

    Google Scholar 

  • Gattuso, J. P., Pinchon, M., Delesalle, B., Canon, C., and Frankignoulle, M., 1996. Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Marine Ecological Progress Series, 145, 109–121.

    Google Scholar 

  • Gattuso, J. P., Frankignoulle, M., and Wollast, R., 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Review of Ecological Systems, 29, 405–434.

    Google Scholar 

  • Gattuso, J. P., Allemand, D., and Frankignoulle, M., 1999. Photosynthesis and calcification at cellular, organismal, and community levels in coral reefs: a review of interactions and control by carbonate chemistry. American Zoologist, 39, 160–183.

    Google Scholar 

  • Haberstroh, P. R., and Sansone, F. J., 1999. Reef framework diagenesis across wave-flushed oxic-suboxic-anoxic transition zones. Coral Reefs, 18, 229–240.

    Google Scholar 

  • Hatcher, B. G., 1997. Organic production and decomposition. In Birkeland, C. (ed.), Life and Death of Coral Reefs. New York: Chapman & Hall, pp. 140–174.

    Google Scholar 

  • Hearn, C. J., Atkinson, M. J., and Falter, J. L., 2001. A physical derivation of nutrient-uptake rates in coral reefs: effects of roughness and waves. Coral Reefs, 20, 347–356.

    Google Scholar 

  • Hochberg, E. J., and Atkinson, M. J., 2008. Coral reef benthic productivity based on optical absorptance and light-use efficiency. Coral Reefs, 27, 49–59.

    Google Scholar 

  • Hochberg, E. J., Atkinson, M. J., and Andrefouet, S., 2003. Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sensing of Environment, 85, 159–173.

    Google Scholar 

  • Hoegh-Guldberg, O., and Williamson, J., 1999. Availability of two forms of dissolved nitrogen to the coral Pocillapora damicornis and its symbiotic zoooxanthellae. Coral Reefs, 133, 561–570.

    Google Scholar 

  • Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., et al., 2007. Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737–1742.

    Google Scholar 

  • Huettel, M., and Rusch, A., 2000. Transport and degradation of phytoplankton in permeable sediment. Limnology and Oceanography, 45, 534–549.

    Google Scholar 

  • Kinsey, D. W., 1985. Metabolism, calcification, and carbon production: I. Systems level studies. 5th International Coral Reef Congress, Tahiti, 4, 505–526.

    Google Scholar 

  • Kleypas, J. A., and Langdon, C., 2006. Coral reefs and changing seawater chemistry. In Phinney, J. T., Hoegh-Guldberg, O., Kleypas, J., Skirving, W., and Strong, A. (eds.), Coral reefs and climate change science: science and management. American Geophysical Union Monograph Series, Coastal Estuary Studies, 61, 73–110.

    Google Scholar 

  • Kraines, S., Suzuki, Y., Yamada, K., and Komiyama, H., 1996. Separating biological and physical changes in dissolved oxygen concentration in a coral reef. Limnology and Oceanography, 41, 1790–1799.

    Google Scholar 

  • Kraines, S., Suzuki, Y., Omori, T., Shitashima, K., Kanahara, S., and Komiyama, H., 1997. Carbonate dynamics of the coral reef system at Bora Bay, Miyako Island. Marine Ecology Progress Series, 156, 1–16.

    Google Scholar 

  • Langdon, C., Broecker, W. S., Hammond, D. E., Glen, E., Fitzsimmons, K., Nelson, S. G., Peng, T. H., Hajdas, I., and Bemani, G., 2003. Effects of elevated CO2 on the community metabolism of an experimental coral reef. Global Biogeochemical Cycles, 17(1), 1011, doi: 10,1029/2002GB001941.

    Google Scholar 

  • Odum, H. T., and Odum, E. P., 1955. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecology Monograph, 25, 1415–1444.

    Google Scholar 

  • Ribes, M., Coma, R., Atkinson, M. J., and Kinzie III, R. A., 2003. Particles removal by coral reef communities: a major source of nitrogen. Marine Ecology Progress Series, 257, 13–23.

    Google Scholar 

  • Sansone, F. J., Tribble, G. W., Andrews, C. A., and Chanton, J. P., 1990. Anaerobic diagenesis within recent, pleistocene, and eocene marine carbonate frameworks. Sedimentology, 37, 997–1009.

    Google Scholar 

  • Schlichter, D., and Liebezeit, G., 1991. The natural release of amino acids from the symbiotic coral Heteroxenia fuscescens (Ehrb.) as a function of photosynthesis. Journal of Experimental Marine Biology and Ecology, 150, 83–90.

    Google Scholar 

  • Sebens, K. P., Grace, S. P., Helmuth, B., Maney, Jr., E. J., and Miles, J. S., 1997. Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa, and Porites porites in a field enclosure. Marine Biology, 131, 347–360.

    Google Scholar 

  • Smith, S. V., and Buddemeier, R. W., 1992. Global change in coral reef ecosystems. Annual Review of Ecological Systems, 23, 89–118.

    Google Scholar 

  • Tarrant, A. M., Atkinson, M. J., and Atkinson, S., 2004. Effects of steroidal estrogens on coral growth and reproduction. Marine Ecology Progress Series, 269, 121–129.

    Google Scholar 

  • Tribble, G. W., Sansone, F. J., and Smith, S. V., 1990. Stoichiometric modeling of carbon diagenesis within a coral reef framework. Geochimica Cosmochimica Acta, 54, 2439–2449.

    Google Scholar 

  • Tribollet, A., 2008. The boring microflora in modern coral reef ecosystems: a review of its roles. In Wisshak, M., and Tapanila, L. (eds.), Current Developments in Bioerosion. Berlin/Heidelberg: Springer, pp. 67–94.

    Google Scholar 

  • Wilkinson, C. R., Williams, D., Sammarco, P. W., Hogg, R. W., and Trott, L. A., 1984. Rates of nitrogen fixation on coral reefs across the continental shelf of the central Great Barrier Reef. Marine Biology, 80, 255–262.

    Google Scholar 

  • Yahel, G., Post, A. F., Fabricius, K., Marie, D., Vaulot, D., and Genin, A., 1998. Phytoplankton distribution and grazing near coral reefs. Limnology and Oceanography, 43, 551–563.

    Google Scholar 

  • Yahel, G., Sharp, J. H., Marie, D., Hase, C., and Genin, A., 2003. In-situ feeding and element removal in the symbiotic-bearing sponge Theonella swinhoei: Bulk DOC is the major source for carbon. Limnology and Oceanography, 48(1),141–149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Atkinson, M.J. (2011). Carbon Fluxes of Coral Reefs. In: Hopley, D. (eds) Encyclopedia of Modern Coral Reefs. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2639-2_52

Download citation

Publish with us

Policies and ethics