Skip to main content

Algae, Coralline

  • Reference work entry
Encyclopedia of Modern Coral Reefs

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Calcareous Corallinales; Corallines; Coralline algae; Nullipores; Rhodalgal facies (geological term)

Definition

Coralline algae are heavily calcified red algae of the order Corallinales (Rhodophyta). The plant body (thallus) is composed of chains of cells (filaments) that may fuse laterally or also form secondary (lateral) pit connections. Separate haploid male and female plants produce gametes in sori (spore clusters) or domed single-pored conceptacles, with spores (haploid tetraspores or diploid bispores) being formed in sori that are typically modified into either single-pored or multipored conceptacles.

Introduction

Coralline algae are important carbonate sediment producers and rank among the major reef builders. Corallines are characterized by a thallus that is stony because of calcareous deposits contained within and between the cell walls. This extensive calcite crystalline form of CaCO3is a major factor determining the geological importance of the group. High...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Agassiz, A., 1888. Three Cruises of the United States Coast and Geodetic Survey Steamer “Blake.” Boston: Houghton, Mifflin Co, Vol. 2, 220 p.

    Google Scholar 

  • Aguirre, J., Riding, R., and Braga, J. C., 2000. Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology, 26(4), 651–667.

    Google Scholar 

  • Bailey, J. C., 1999. Phylogenetic positions of Lithophyllum incrustans and Titanoderma pustulatum (Corallinaceae, Rhodophyta) based on 18S rRNA gene sequence analyses, with a revised classification of the Lithophylloideae. Phycologia, 38, 208–216.

    Google Scholar 

  • Bory de Saint-Vincent, J. B., 1832. Notice sur les polypiers de la Grèce. Expédition Scientifique de Morée (Section des Sciences Physiques), 3(1), 204–209, pl. 54.

    Google Scholar 

  • Darwin, C. R., 1842. The Structure and Distribution of Coral Reefs. Being the First Part of the Geology of the Voyage of the Beagle, Under the Command of Capt. FitzRoy, R.N. During the Years 1832 to 1836. London: Smith Elder and Co, pp. i–xii, 1–214, pls I–II.

    Google Scholar 

  • Dawson, E. Y., 1961. The rim of the reef. Natural History, 70, 8–17.

    Google Scholar 

  • Esteban, M., 1996. An overview of Miocene reefs from Mediterranean areas: general trends and facies models. In Franseen, E., Esteban, M., Ward, W. C., and Rouchy, J. M. (eds.), Models for Carbonate Stratigraphy from Miocene Reef Complexes of the Mediterranean Regions. Society of Economic Paleontologists and Miner, Concepts in Sedimentology and Paleontology Series, Vol. 5, pp. 3–53.

    Google Scholar 

  • Halfar, J., and Mutti, M., 2005. Global dominance of coralline red-algal facies: a response to Miocene oceanographic events. Geology, 33(6), 481–484.

    Google Scholar 

  • Halfar, J., Godinez-Orta, L., Mutti, M., Valdez-Holguin, J., and Borges, J., 2004. Nutrient and temperature controls on modern carbonate production: an example from the Gulf of California, Mexico. Geology, 32(3), 213–216.

    Google Scholar 

  • Harrington, L., Fabricius, K., De’Ath, G., and Negri, A., 2004. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology, 85, 3428–3437.

    Google Scholar 

  • Iglesias-Rodriguez, M. D., Halloran, P. R., Rosalind E. M., Rickaby, R. E. M., Hall, I. R., Elena Colmenero-Hidalgo, E., Gittins, J. R., Green, D. R. H., Tyrrell, T., Gibbs, S. J., von Dassow, P., Rehm, E., Armbrust, E. V., and Boessenkool, K. P., 2008. Phytoplankton Calcification in a High-CO2 World. Science, 320(5874), 336–340.

    Google Scholar 

  • Johnson, C. R., and Mann, K. H., 1986. The crustose coralline alga, Phymatolithon Foslie, inhibits the overgrowth of seaweeds without relying on herbivores. Journal of Experimental Marine Biology and Ecology, 96(2), 127–146.

    Google Scholar 

  • Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J. P., Langdon, C., and Opdyke, B. N., 1999. Geochemical consequences of increased atmospheric CO2 on coral reefs. Science, 284(5411), 118–120.

    Google Scholar 

  • Littler, M. M., 1973. The population and community structure of Hawaiian fringing-reef crustose Corallinaceae (Rhodophyta, Cryptonemiales). Journal of Experimental Marine Biology and Ecology, 11, 103–120.

    Google Scholar 

  • Littler, M. M., and Kauker, B., 1984. Heterotrichy and survival strategies in the red alga Corallina officinalis L. Botanica Marina, 27, 37–44.

    Google Scholar 

  • Littler, M. M., and Littler, D. S., 1994. Plant life of the deep ocean realm. Biologie in Unserer Zeit, 24(6), 330–335 [In German].

    Google Scholar 

  • Littler, M. M., and Littler, D. S., 1995. CLOD spreading in the sea-surface microlayer: response. Science, 270, 897.

    Google Scholar 

  • Littler, M. M., and Littler, D. S., 1997. Disease-induced mass mortality of crustose coralline algae on coral reefs provides rationale for the conservation of herbivorous fish stocks. In Proceedings of the Eighth International Coral Reef Symposium. Panama, pp. 719–724.

    Google Scholar 

  • Littler, M. M., and Littler, D. S., 1998. An undescribed fungal pathogen of reef-forming crustose coralline algae discovered in American Samoa. Coral Reefs, 17(2), 144.

    Google Scholar 

  • Littler, M. M., and Littler, D. S., 1999. Castles built by a chiton from the Great Astrolabe Reef, Fiji. Coral Reefs, 18(2), 146.

    Google Scholar 

  • Littler, M. M., and Littler, D. S., 2007. Assessment of coral reefs using herbivory/nutrient assays and indicator groups of benthic primary producers: a critical synthesis, proposed protocols, and critique of management strategies. Aquatic Conservation: Marine and Freshwater Ecosystems, 17, 195–215.

    Google Scholar 

  • Littler, M. M., Littler, D. S., and Brooks, B. L., 2007. Target phenomena on south Pacific reefs: strip harvesting by prudent pathogens? Reef Encounter, 34, 23–24.

    Google Scholar 

  • Littler, M. M., Littler, D. S., and Hanisak, M. D. 1991. Deep-water rhodolith distribution, productivity and growth history at sites of formation and subsequent degradation. Journal of Experimental Marine Biology and Ecology, 91, 1–20.

    Google Scholar 

  • Littler, M. M., Littler, D. S., and Taylor, P. R., 1995. Selective herbivore increases biomass of its prey: a chiton-coralline reef-building association. Ecology, 76(5), 1661–1681.

    Google Scholar 

  • Ohde, S., 1995. Calcium carbonate production and carbon dioxide flux on a coral reef, Okinawa. In Sakai, H., and Nozaki, Y. (eds.), Biogeochemical Processes and Ocean Flux in the Western Pacific. Tokyo: Terra Scientific Publishing Company (TERRAPUB), pp. 93–98.

    Google Scholar 

  • Philippi, R. A., 1837. Beweis, dass die Nulliporen Pflanzen sind. Archiv Für Naturgeschicthe, 3, 387–393, pl. 9, figs 2–6.

    Google Scholar 

  • Shors, E. C., 1999. Coralline bone graft substitutes. Orthopedic Clinics of North America, 30, 599–613.

    Google Scholar 

  • Silva, P. C., and Johansen, H. W., 1986. A reappraisal of the order Corallinales (Rhodophyceae). European Journal of Phycology, 21, 245–254.

    Google Scholar 

  • Sloane, H., 1707. A Voyage to the Islands, Madera, Barbados, Nieves, S. Christophers and Jamaica. London: Privately published, Vol. 1, 364 pp.

    Google Scholar 

  • Steneck, R. S., 1983. Quantifying herbivory on coral reefs: just scratching the surface and still biting off more than we can chew. In Reaka, M. L. (ed.), The Ecology of Deep and Shallow Coral Reefs. Symposia Series for Undersea Research, Vol. 1, pp. 1103–1112.

    Google Scholar 

  • Steneck, R. S., 1985. Adaptations of crustose coralline algae to herbivory: patterns in space and time. In Toomy, D., and Nitecki, M. (eds.), Paleoalgology. Berlin: Springer-Verlag, pp. 352–366.

    Google Scholar 

  • Steneck, R. S., 1989. Herbivory on coral reefs: a synthesis. In Proceedings of the Sixth International Coral Reef Symposium. Australia, Townsville, Vol. 1, pp. 37–49.

    Google Scholar 

  • Woelkerling, W. J., 1988. The Coralline Red Algae: An Analysis of the Genera and Subfamilies of Nongeniculate Corallinaceae. London: British Museum (Natural History).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Littler, M.M., Littler, D.S. (2011). Algae, Coralline. In: Hopley, D. (eds) Encyclopedia of Modern Coral Reefs. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2639-2_2

Download citation

Publish with us

Policies and ethics