Skip to main content
  • 1400 Accesses

Abstract

Starting from an atomistic approach we have derived a hierarchy of successively more simplified continuum elasticity descriptions for modeling the mechanical properties of suspended graphene sheets. We find that already for deflections of the order of 0.5 Å a theory that correctly accounts for nonlinearities is necessary and that for many purposes a set of coupled Duffing-type equations may be used to accurately describe the dynamics of graphene membranes. The descriptions are validated by applying them to square graphene-based resonators with clamped edges and studying numerically their mechanical responses. Both static and dynamic responses are treated, and we find good agreement with recent experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS, Geim, AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov (2004) Electric field effect in atomically thin carbon films. A.A. Science, 306: 666

    CAS  Google Scholar 

  2. Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich VV, Morozov S V and Geim AK (2005) Two-dimensional atomic crystals. PNAS 102: 10451–10453

    Article  CAS  Google Scholar 

  3. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science 321: 385

    Article  CAS  Google Scholar 

  4. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2007) The electronic properties of graphene. ArXiv: 0709.1163

    Google Scholar 

  5. Guinea F, Castro Neto AH, Peres NMR (2007) Electronic properties of stacks of graphene layers. Solid State Commun. 143: 116

    Article  CAS  Google Scholar 

  6. Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315: 490–493

    Article  CAS  Google Scholar 

  7. Garcia-Sanchez D, van der Zande AM San Paulo A, Lassagne B, McEuen PL, Bachtold A (2008) Imaging mechanical vibrations in suspended graphene sheets. Nano Lett. 8(5): 1399–1403

    Article  CAS  Google Scholar 

  8. Scott Bunch J, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL. (2008) Impermeable atomic membranes from graphene sheets. Nano Lett. 8(8): 2458–2462

    Article  CAS  Google Scholar 

  9. Kim E-A, Castro Neto AH (2007) Graphene as an electronic membrane. arXiv:cond-mat/0702562v2 cond-mat.other

    Google Scholar 

  10. Isacsson A, Jonsson LM, Kinaret JM, Jonson M (2008) Electronic superlattices in corrugated graphene. Phys. Rev. B 77: 035423

    Article  CAS  Google Scholar 

  11. Tarakanov YA, Kinaret A (2007) Carbon nanotube field effect transistor with a suspended nanotube gate. Nano Lett. 7(8): 2291–2294

    Article  CAS  Google Scholar 

  12. Kinaret JM, Nord T, Viefers SA (2003) Carbon-nanotube-based nanorelay. Appl. Phys. Lett. 82: 1287

    Article  CAS  Google Scholar 

  13. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 76: 2511

    Article  CAS  Google Scholar 

  14. Kudin KN, Scuseria GE, Yakobson BI (2001) C2F, BN, and C nanoshell elasticity from ab initio computattions. Phys. Rev. B 64: 235406

    Article  CAS  Google Scholar 

  15. Arroyo M, Belytschko T (2004) Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys. Rev. B 69: 115415

    Article  CAS  Google Scholar 

  16. Witkamp B, Poot M, van der Zant HSJ (2006) Bending-mode vibration of a suspended nanotube resonator. Nano Lett. 6(12): 2904–2908

    Article  CAS  Google Scholar 

  17. Wilber JP, Clemons CB, Young GW (2007) Continuum atomistic modeling of interacting graphene layers. Phys. Rev. B 75: 045418

    Article  CAS  Google Scholar 

  18. Huang Y, Wu J, Hwang KC (2006) Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74:245413

    Article  CAS  Google Scholar 

  19. Cristiano N, Lammert PE, Mockensturm E, Crespi VH (2007) Carbon nanostructures as an electromechanical continuum. Phys. Rev. Lett. 99: 045501

    Article  CAS  Google Scholar 

  20. Samadikhah K, Atalaya J, Huldt C, Isacsson A, Kinaret J (2007) General elasticity theory for graphene membranes based on molecular dynamics. Proceedings, MRS Fall Meeting, 1057-II10-20.

    Google Scholar 

  21. Tanenbaum IW, van der Zande DM, McEuen P AM, Frank J (2007) Mechanical properties of suspended graphene sheets. Vac. Sci. Technol. B 25: 2558

    Article  CAS  Google Scholar 

  22. Atalaya J (2008).Elasticity theory for graphene membranes. M.Sc. thesis, The University of Gothenburg, Göteborg, Sweden

    Google Scholar 

  23. Atalaya J, Isacsson A, Kinaret JM (2008) Continuum elastic modeling of graphene resonators. Nano Lett. 8(12): 4196–4200

    Article  CAS  Google Scholar 

  24. Keating PN (1966) Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145: 637

    Article  CAS  Google Scholar 

  25. Martin RM (1970) Elastic properties of ZnS structure semiconductors. Phys. Rev. B 1: 4005

    Article  Google Scholar 

  26. Lobo C, Martins JL (1997) Valence force field model for graphene and fullerenes. J Phys. D 39: 159–164

    Article  CAS  Google Scholar 

  27. Drozdov AD. Finite Elasticity and Viscoelasticity, World Scientific, Singapore, 1996

    Google Scholar 

  28. Landau LD, Lifshitz EM (1959) Theory of Elasticity, 1st Eng. ed., Pergamon Press Ltd, London

    Google Scholar 

  29. Karniadakis GEM, Sherwin S (2005) Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd ed., Oxford Science publications, London

    Book  Google Scholar 

  30. Yosibash Z, Kirby RM, Gottlieb D (2004) Collocation methods for the solution of von-Karman dynamic non-linear plate systems. J. Comput. Phys. 200: 432–461

    Article  Google Scholar 

  31. Timoshenko S (1928) Vibration Problems in Engineering, D. Van Nostrand Company, Inc., USA, pp. 297–307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ener Salinas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Atalaya, J., Isacsson, A., Kinaret, J.M., Salinas, E. (2010). Elasticity Theory for Graphene Membranes. In: Dunne, L.J., Manos, G. (eds) Adsorption and Phase Behaviour in Nanochannels and Nanotubes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2481-7_13

Download citation

Publish with us

Policies and ethics