Skip to main content

Hierarchical Bayesian Model for Gaussian, Poisson and Ordinal Random Fields

  • Chapter
  • First Online:
geoENV VII – Geostatistics for Environmental Applications

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 16))

  • 1691 Accesses

Abstract

As most georeferenced data sets are multivariate and concern variables of different kinds, spatial mapping methods must be able to deal with such data. The main difficulties are the prediction of non Gaussian variables and the modelling of the dependence between processes. The aim of this paper is to propose a new approach that permits simultaneous modelling of Gaussian, count and ordinal spatial processes. We consider a hierarchical model implemented within a Bayesian framework. The method used for Gaussian and count variables is based on the generalized linear mixed models. Ordinal variable is taken into account through a generalization of the ordinal probit model. We use a moving average approach to model the spatial dependence between the processes. The proposed model is applied to pedological data collected in French Guiana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ashford S, Swoden R (1970) Multivariate probit analysis. Biometrics 26:535–546

    Article  Google Scholar 

  • Atchade Y (2006) An adaptive version for the Metropolis Adjusted Langevin Algorithm with a truncated drift. Methodol Comput Appl Probab 8(2):235–254

    Article  Google Scholar 

  • Banerjee S, Carlin B, Gelfand A (2004) Hierarchical modeling and analysis for spatial data. Number 101 in Monogr. Statist. Appl Probab Chapman and Hall/CRC Boca Raton, FL

    Google Scholar 

  • Bogaert P (2002) Spatial prediction of categorical variables: the Bayesian maximum entropy approach. Stoch Environ Res Risk Assess 16:425–448

    Article  Google Scholar 

  • Chagneau P, Mortier F, Picard N, Bacro J (2008) Hierarchical Bayesian model for spatial prediction of multivariate non-Gaussian random fields (submitted)

    Google Scholar 

  • Chaubert F, Mortier F, Saint-André L (2008) Multivariate dynamic model for ordinal outcomes. J Multivariate Anal 99:1717–1732

    Article  Google Scholar 

  • Chib S, Greenberg E (1998) Analysis of multivariate probit models. Biometrika 85(2):347–361

    Article  Google Scholar 

  • Chilès J, Delfiner P (1999) Geostatistics. Modeling spatial uncertainty. Wiley Ser. Probab. Stat. Wiley, New York

    Book  Google Scholar 

  • Christakos G (1990) A bayesian maximum-entropy view to the spatial estimation problem. Math Geol 22(7):763–777

    Article  Google Scholar 

  • Christakos G (1998) Bayesian Maximum Entropy analysis and mapping: a farewell to kriging estimators? Math Geol 30(4):435–462

    Article  Google Scholar 

  • Cowles M (1996) Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models. Statist Comput 6:101–111

    Article  Google Scholar 

  • Cressie N (1991) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Daganzo C (1979) Multinomial probit. The theory and its application to demand forecasting. Academic Press, A Subsidiary of Harcourt Brace Jovanovich, New York

    Google Scholar 

  • Diggle P, Tawn J, Moyeed R (1998) Model-based geostatistics (With discussion). J R Stat Soc Ser C 47(3):299–350

    Article  Google Scholar 

  • D’Or D, Bogaert P (2004) Spatial prediction of categorical variables with the Bayesian Maximum Entropy approach: the Ooypolder case study. Eur J Soil Sci 55:763–775

    Article  Google Scholar 

  • Epron D, Bosc A, Bonal D, Freycon V (2006) Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana. J Trop Ecol 22:565–574

    Article  Google Scholar 

  • FAO-ISRIC-ISSS (1998) World reference base for soil resources. In: World Soil Resour Rep 84:109

    Google Scholar 

  • Gourlet-Fleury S, Guehl J, Laroussinie O (2004) Ecology and management of neotropical rainforest lessons drawn from Paracou, a long-term experimental research site in French Guiana. Elsevier Paris

    Google Scholar 

  • Grzebyk M, Wackernagel H (1994) Multivariate analysis and spatial/temporal scales: real and complex models. In: Proceedings of the XVIIth international biometric conference, Hamilton, Ontario

    Google Scholar 

  • Hastings W (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  • Journel A, Huijbregts C (1978) Mining geostatistics. Academic Press, London

    Google Scholar 

  • Kern J (2000) Bayesian process-convolution approaches to specifying spatial dependence structure. Ph.D. thesis, Institute of Statistics and Decision Sciences, Duke University, Durhan, NC

    Google Scholar 

  • Matheron G, Beucher H, Fouquet C, Galli A, Guerillot D, Ravenne C (1987) Conditional simulation of the geometry of fluvio-deltaic reservoirs. In: Proceedings of the SPE annual technical conference and exhibition, Dallas, Texas, 237–30 September 1987, reservoir engineering

    Google Scholar 

  • Natarajan R, McCulloch C, Kiefer N (2000) A Monte Carlo EM method for estimating multinomial probit models. Comput Stat Data Anal 34:33–50

    Article  Google Scholar 

  • Sabatier D, Grimaldi M, Prevost M, Guillaume J, Godron M, Dosso M, Curmi P (1997) The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest. Plant Ecol 131:81–108

    Article  Google Scholar 

  • Ver Hoef J, Barry R (1998) Constructing and fitting models for cokriging and multivariable spatial prediction. J Stat Plann Infer 69(2):275–294

    Article  Google Scholar 

  • Ver Hoef J, Cressie N, Barry R (2004) Flexible spatial models for kriging and cokriging using moving averages and the Fast Fourier Transform (FFT). J Comput Graph Stat 13:265–289

    Article  Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics. An introduction with applications, 3rd completely revised edn. Springer, Berlin

    Google Scholar 

  • Wolpert RL, Ickstadt K (1998) Poisson/gamma random field models for spatial statistics. Biometrika 85(2):251–267

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierrette Chagneau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chagneau, P., Mortier, F., Picard, N., Bacro, JN. (2010). Hierarchical Bayesian Model for Gaussian, Poisson and Ordinal Random Fields. In: Atkinson, P., Lloyd, C. (eds) geoENV VII – Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2322-3_29

Download citation

Publish with us

Policies and ethics