Skip to main content

A Viscosity Equation for Minimizers of a Class of Very Degenerate Elliptic Functionals

  • Chapter
Book cover Geometric Properties for Parabolic and Elliptic PDE's

Part of the book series: Springer INdAM Series ((SINDAMS,volume 2))

Abstract

We consider the functional

$$J(v) = \int_\varOmega\bigl[f\bigl(|\nabla v|\bigr) - v\bigr] dx, $$

where Ω is a bounded domain and f:[0,+∞)→ℝ is a convex function vanishing for s∈[0,σ], with σ>0. We prove that a minimizer u of J satisfies an equation of the form

$$\min\bigl(F\bigl(\nabla u, D^2 u\bigr), |\nabla u|-\sigma\bigr)=0 $$

in the viscosity sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brasco, L.: Global L gradient estimates for solutions to a certain degenerate elliptic equation. Nonlinear Anal. 74, 516–531 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brasco, L., Carlier, G., Santambrogio, F.: Congested traffic dynamics, weak flows and very degenerate elliptic equations. J. Math. Pures Appl. 93, 652–671 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buttazzo, G., Kawohl, B.: Overdetermined boundary value problems for the ∞-Laplacian. Int. Math. Res. Not. 2, 237–247 (2011)

    MathSciNet  Google Scholar 

  4. Cabré, X., Caffarelli, L.: Fully Nonlinear Elliptic Equations. Colloquium Publications, vol. 43. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  5. Carstensen, C., Müller, S.: Local stress regularity in scalar nonconvex variational problems. SIAM J. Math. Anal. 34, 495–509 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cecchini, S., Magnanini, R.: Critical points of solutions of degenerate elliptic equations in the plane. Calc. Var. Partial Differ. Equ. 39(1–2), 121–138 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciraolo, G., Magnanini, R., Sakaguchi, S.: Symmetry of minimizers with a level surface parallel to the boundary. Preprint. http://arxiv.org/abs/1203.5295 (2012)

  8. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crasta, G.: Existence, uniqueness and qualitative properties of minima to radially symmetric non-coercive non-convex variational problems. Math. Z. 235, 569–589 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fonseca, I., Fusco, N., Marcellini, P.: An existence result for a nonconvex variational problem via regularity. ESAIM Control Optim. Calc. Var. 7, 69–95 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fragalà, I., Gazzola, F., Kawohl, B.: Overdetermined problems with possibly degenerate ellipticity, a geometric approach. Math. Z. 254, 117–132 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1977)

    MATH  Google Scholar 

  13. Jensen, R.: Uniqueness of Lipschitz’s extensions: minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123, 51–74 (1993)

    Article  MATH  Google Scholar 

  14. Juutinen, P., Lindqvist, P., Manfredi, J.J.: The ∞-eigenvalue problem. Arch. Ration. Mech. Anal. 148(2), 89–105 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koike, S.: A Beginner’s Guide to the Theory of Viscosity Solutions. MSJ Mem., vol. 13. Mathematical Society of Japan, Tokyo (2004)

    MATH  Google Scholar 

  16. Magnanini, R., Talenti, G.: On complex-valued solutions to a 2D eikonal equation. Part one: qualitative properties. In: Nonlinear Partial Differential Equations. Contemporary Mathematics, vol. 283, pp. 203–229. American Mathematical Society, Providence (1999)

    Chapter  Google Scholar 

  17. Magnanini, R., Talenti, G.: On complex-valued solutions to a 2D eikonal equation. Part two: existence theorems. SIAM J. Math. Anal. 34, 805–835 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Magnanini, R., Talenti, G.: On complex-valued solutions to a 2D eikonal equation. Part three: analysis of a Backlund transformation. Appl. Anal. 85(1–3), 249–276 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Magnanini, R., Talenti, G.: On complex-valued 2D eikonals. Part four: continuation past a caustic. Milan J. Math. 77(1), 1–66 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Santambrogio, F., Vespri, V.: Continuity in two dimensions for a very degenerate elliptic equation. Nonlinear Anal. 73, 3832–3841 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tolksdorf, P.: On the Dirichlet problem for quasilinear equations in domains with conical boundary points. Commun. Partial Differ. Equ. 8, 773–817 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Rolando Magnanini and Simone Cecchini for the many helpful discussions. The author is grateful for the careful and thoughtful comments of the referees which led to substantial improvements over a first version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Ciraolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Ciraolo, G. (2013). A Viscosity Equation for Minimizers of a Class of Very Degenerate Elliptic Functionals. In: Magnanini, R., Sakaguchi, S., Alvino, A. (eds) Geometric Properties for Parabolic and Elliptic PDE's. Springer INdAM Series, vol 2. Springer, Milano. https://doi.org/10.1007/978-88-470-2841-8_5

Download citation

Publish with us

Policies and ethics