Skip to main content

Computation of Maxwell eigenvalues on curvilinear domains using hp-version Nédélec elements

  • Conference paper
Numerical Mathematics and Advanced Applications

Summary

In this paper we present and numerically verify theoretical bounds on the growth of the conditioning number for an H(curl)-conforming basis suitable for variable order approximation on curvilinear quadrilateral or hexahedral meshes. These bounds are given explicitly in terms of the maximum polynomial degree of approximation employed throughout the mesh. Additionally, numerical examples demonstrating the use of the basis in the context of electromagnetic eigenvalue problems on curved domains with reentrant comers are given. These examples also serve as a preliminary investigation of hp-refinement in computing eigenvalues corresponding to both singular and non-singular eigenfunctions on curvilinear domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth, M., Coyle, J. (2001): Conditioning of hierarchic p-version Nédélec elements on meshes of curvilinear quadrilaterals and hexahedra. SIAM J. Numer. Anal., to appear

    Google Scholar 

  2. Ainsworth, M., Coyle J. (2001): Hierarchic hp-edge element families for Maxwell’s equations on hybrid quadrilateral/triangular meshes. Comput. Methods Appl. Mech. Engrg. 190, 6709–6733

    Article  MathSciNet  MATH  Google Scholar 

  3. Ainsworth, M., Pinchedez, K. (2001): hp-approximation theory for BDFM/RT elements and applications. SIAM J. Numer. Anal., to appear

    Google Scholar 

  4. Ainsworth, M., Senior, B. (1998): An adaptive refinement strategy for hp-finite element computations. Appl. Numer. Math. 26, 165–178

    Article  MathSciNet  MATH  Google Scholar 

  5. Ainsworth, M., Senior, B. (1999): hp-finite element procedures on non-uniform geometric meshes: adaptivity and constrained approximation. In: Bern, M.W. et al. (eds.): Grid generation and adaptive algorithms. (The IMA Volumes in Mathematics and its Applications, vol. 113). Springer, New York, pp. 1–27

    Chapter  Google Scholar 

  6. Bajer, A., Gerdes, K., Demkowicz, L., Rachowicz, W. (1999): 3D hp-adaptive finite element package. Fortran 90 Implementation (3Dhp90). TICAM Report 99-29. University of Texas, Austin, TX

    Google Scholar 

  7. Boffi, D., Fernandes, P., Gastaldi, L., Perugia, I. (1999): Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36, 1264–1290

    Article  MathSciNet  MATH  Google Scholar 

  8. Bossavit, A., Mayergoyz, I. (1989): Edge elements for scattering problems. IEEE Trans. Magnetics 25, 2816–2821

    Article  Google Scholar 

  9. Bossavit, A., Verite, J.-C. (1982): A mixed FEM-BEM method to solve 3-D eddy-current problems. IEEE Trans. Magnetics MAG-18, 431–435

    Article  Google Scholar 

  10. Ciarlet, P.G. (1978): The finite element method for elliptic problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  11. Dauge, M. (2001): http://www.maths.univ-rennes1.fr/~dauge/~dauge

  12. Demkowicz, L., Monk, P., Schwab, C., Vardapetyan, L. (2000): Maxwell eigenvalues and discrete compactness in two dimensions. Comput. Math. Appl. 40, 589–605

    Article  MathSciNet  MATH  Google Scholar 

  13. Demkowicz, L., Vardapetyan, L. (1998): Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152, 103–124

    Article  MathSciNet  MATH  Google Scholar 

  14. Gradshteyn, I.S., Ryzhik, I.M. (1994): Tables of integrals, series, and products. Fifth edition. Academic Press, Boston, MA

    Google Scholar 

  15. Hiptmair, R. (2001): Higher order Whitney forms. J. Electromagnetic Waves Appl. 15, 341–342

    Article  Google Scholar 

  16. Hu, N., Guo, X.-Z., Katz, I.N. (1998): Bounds for eigenvalues and condition numbers in the p-version of the finite element method. Math. Comp. 67, 1423–1450

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin, J. (1993): The finite element method in electromagnetics. Wiley, New York

    Google Scholar 

  18. Kikuchi, F. (1987): Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Comput. Methods Appl. Mech. Engrg. 64, 509–521

    Article  MathSciNet  MATH  Google Scholar 

  19. Monk, P. (1993): An analysis of Nédélec’s method for spatial discretization of Maxwell’s equations. J. Comput. Appl. Math. 47, 101–121

    Article  MathSciNet  MATH  Google Scholar 

  20. Mur, G. (1994): Edge elements, their advantages and their disadvantages. IEEE Trans. Magnetics 30, 3552–3557

    Article  Google Scholar 

  21. Nédélec, J.-C. (1980): Mixed finite elements in ℝ3. Numer. Math. 93, 315–341

    Article  Google Scholar 

  22. Rachowicz, W., Demkowicz, L. (1998): A two dimensional hp-adaptive finite element package for clectromagnetics (2Dhp90_EM). TICAM Report 98-16. University of Texas, Austin, TX

    Google Scholar 

  23. Rachowicz, W., Demkowicz, L. (2002): An hp-adaptive finite element method for electromagnetics. II. A 3D implementation. Internat, J. Numer. Methods Engrg. 53, 147–180

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, D., Manges, J., Yuan, X., Cendes, Z. (1995): Spurious modes in finite-element methods. IEEE Antennas Propagation 37(5), 12–24

    Article  Google Scholar 

  25. Szabó, B., Babuška, I. (1991): Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  26. Webb, J. (1999): Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements. IEEE Antennas and Propagation 47, 1244–1253

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Italia

About this paper

Cite this paper

Ainsworth, M., Coyle, J. (2003). Computation of Maxwell eigenvalues on curvilinear domains using hp-version Nédélec elements. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds) Numerical Mathematics and Advanced Applications. Springer, Milano. https://doi.org/10.1007/978-88-470-2089-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2089-4_20

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2167-9

  • Online ISBN: 978-88-470-2089-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics