Skip to main content

Protezione degli alimenti mediante basse temperature e caratteristiche dei microrganismi psicrotrofi

  • Chapter
Microbiologia degli alimenti

Part of the book series: Food ((FOOD))

  • 1086 Accesses

Estratto

L’impiego delle basse temperature per la conservazione degli alimenti si basa sul fatto che l’attività dei microrganismi può essere rallentata a temperature di poco superiori a 0 °C ed è generalmente inibita a temperature inferiori. La ragione di tale fenomeno è che tutte le reazioni metaboliche dei microrganismi sono catalizzate da enzimi e che la velocità di tali reazioni è funzione della temperatura. Un aumento di temperatura determina un aumento della velocità di reazione. Il coefficiente termico (Q10) è generalmente definito come segue:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Alford JA, Elliott LE (1960) Lipolytic activity of microorganisms at low and intermediate temperatures. I. Action of Pseudomonas fluorescens on lard. Food Res 25: 296–303.

    Google Scholar 

  2. Alford JA, Pierce DA (1961) Lipolytic activity of microorganisms at low and intermediate temperatures. III. Activity of microbial lipases at temperatures below 0 °C. J Food Sci, 26: 518–524.

    Article  CAS  Google Scholar 

  3. Allen MB (1953) The thermophilic aerobic sporeforming bacteria. Bacteriol Rev 17: 125–173.

    CAS  Google Scholar 

  4. Baxter RM, Gibbons NE (1962) Observations on the physiology of psychrophilism in a yeast. Can J Microbiol 8: 511–517.

    CAS  Google Scholar 

  5. Bayles DO, Annous BA, Wilkinson BJ (1996) Cold stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperatures. Appl Environ Microbiol 62: 1116–1119.

    CAS  Google Scholar 

  6. Bhakoo M, Herbert RA (1979) The effect of temperature on psychrophilic Vibrio spp. Arch Microbiol 121: 121–127.

    Article  CAS  Google Scholar 

  7. Bhakoo M, Herbert RA (1980) Fatty acid and phospholipid composition of five psychrotrophic Pseudomonas spp. grown at different temperatures. Arch Microbiol 126: 51–55.

    Article  CAS  Google Scholar 

  8. Bollman J, Ismond A, Blank G (2001) Survival of Escherichia coli O157:H7 in frozen foods: impact of the cold shock response. Int J Food Microbiol 64: 127–138.

    Article  CAS  Google Scholar 

  9. Bonde GJ (1981) Phenetic affiliation of psychrotrophic Bacillus. In: Roberts TA, Hobbs G, Christian JHB, Skovgaard N (eds) Psychrotrophic Microorganisms in Spoilage and Pathogenicity. Academic Press, New York, pp. 39–54.

    Google Scholar 

  10. Byrne P, Chapman D (1964) Liquid crystalline nature of phospholipids. Nature 202: 987–988.

    Article  Google Scholar 

  11. Desrosier NW (1963) The Technology of Food Preparation. AVI, Westport, CT.

    Google Scholar 

  12. Dunican LK, Seeley HW (1963) Temperature-sensitive dextransucrase synthesis by a lactobacillus. J Bacteriol 86: 1079–1083.

    CAS  Google Scholar 

  13. Eddy BP (1960) The use and meaning of the term “psychrophilic”. J Appl Bacteriol 23: 189–190

    Google Scholar 

  14. Edwards OF, Rettger LF (1937) The relation of certain respiratory enzymes to the maximum growth temperatures of bacteria. J Bacteriol 34: 489–515.

    CAS  Google Scholar 

  15. Fairbairn DJ, Law BA (1986) Proteinases of psychrotrophic bacteria: Their production, properties, effects, and control. J Dairy Res 53: 139–177.

    CAS  Google Scholar 

  16. Farrell J, Rose A (1967) Temperature effects on micro-organisms. Annu Rev Microbiol, 21: 101–120.

    Article  CAS  Google Scholar 

  17. Fennema O, Powrie W (1964) Fundamentals of low-temperature food preservation. Adv Food Res 13: 219–347.

    Article  CAS  Google Scholar 

  18. Fennema OR, Powrie WD, Marth EH (1973) Low-Temperature Preservation of Foods and Living Matter. Marcel Dekker, New York.

    Google Scholar 

  19. Frank HA, Reid A, Santo LM, Lum NA, Sandler ST (1972) Similarity in several properties of psychrophilic bacteria grown at low and moderate temperatures. Appl Microbiol, 24: 571–574.

    CAS  Google Scholar 

  20. Gaughran ERI (1947) The thermophilic microorganisms. Bacteriol Rev 11: 189–225.

    CAS  Google Scholar 

  21. Georgala DL, Hurst A (1963) The survival of food poisoning bacteria in frozen foods. J Appl Bacteriol 26: 346–358.

    Google Scholar 

  22. Goldstein A, Goldstein DB, Lowney LI (1964) Protein synthesis at 0 °C in Escherichia coli. J Mol Biol 9: 213–235.

    Article  CAS  Google Scholar 

  23. Greene VW, Jezeski JJ (1954) The influence of temperature on the development of several psychrophilic bacteria of dairy origin. Appl Microbiol 2: 110–117.

    CAS  Google Scholar 

  24. Grzadkowska D, Griffiths MW (2001) Cryotolerance of Escherichia coli O157:H7 in laboratory media and food. J Food Sci 66: 1169–1173.

    CAS  Google Scholar 

  25. Gunderson MF, Rose KD (1948) Survival of bacteria in a precooked fresh-frozen food. Food Res 13: 254–263.

    CAS  Google Scholar 

  26. Harder W, Veldkamp H (1968) Physiology of an obligately psychrophilic marine Pseudomonas species. J Appl Bacteriol 31: 12–23.

    CAS  Google Scholar 

  27. Herbert RA (1981) A comparative study of the physiology of psychrotrophic and psychrophilic bacteria. In: Roberts TA, Hobbs G, Christian JHB, Skovgaard N (eds) Psychrotrophic Microorganisms in Spoilage and Pathogenicity. Academic Press, New York, pp. 3–16.

    Google Scholar 

  28. Hurley WC, FA Gardner, Vanderzant C (1963) Some characteristics of a proteolytic enzyme system of Pseudomonas fluorescens. J Food Sci 28: 47–54.

    Article  CAS  Google Scholar 

  29. Ingraham JL, Bailey GF (1959) Comparative study of effect of temperature on metabolism of psychrophilic and mesophilic bacteria. J Bacteriol 77: 609–613.

    CAS  Google Scholar 

  30. Ingraham JL, Maaløe O (1967) Cold-sensitive mutants and the minimum temperature of growth of bacteria. In: Prosser CL (ed) Molecular Mechanisms of Temperature Adaptation, Pub. No. 84. American Association for the Advancement of Science, Washington, DC., pp. 297–309.

    Google Scholar 

  31. Ingraham JL, Stokes JL (1959) Psychrophilic bacteria. Bacteriol Rev 23: 97–108.

    CAS  Google Scholar 

  32. Ingram M (1951) The effect of cold on microorganisms in relation to food. Proc Soc Appl Bacteriol 14: 243.

    Google Scholar 

  33. Jay JM (1967) Nature, characteristics, and proteolytic properties of beef spoilage bacteria at low and high temperatures. Appl Microbiol 15: 943–944.

    CAS  Google Scholar 

  34. Jay JM (1987) The tentative recognition of psychrotrophic Gram-negative bacteria in 48 h by their surface growth at 10 °C. Int J Food Microbiol 4: 25–32.

    Article  Google Scholar 

  35. Jezeski JJ, Olsen RH (1962) The activity of enzymes at low temperatures. In: Proceedings, Low Temperature Microbiology Symposium — 1961. Campbell Soup Co, Camden, NJ, pp. 139–155.

    Google Scholar 

  36. Kates M, Baxter RM (1962) Lipid comparison of mesophilic and psychrotrophic yeasts (Candida species) as influenced by environmental temperature. Can J Biochem Physiol 40: 1213–1227.

    CAS  Google Scholar 

  37. Kavanau JL (1950) Enzyme kinetics and the rate of biological processes. J Gen Physiol 34: 193–209.

    Article  CAS  Google Scholar 

  38. Liu S, Graham JE, Bigelow L et al. (2002) Identification of Listeria monocytogenes genes expressed in response to growth at low temperatures. Appl Environ Microbiol 68: 1697–1705.

    Article  CAS  Google Scholar 

  39. Luyet B (1962) Recent developments in cryobiology and their significance in the study of freezing and freeze-drying of bacteria. In: Proceedings, Low Temperature Microbiology Symposium — 1961. Campbell Soup Co, Camden, NJ, pp. 63–87.

    Google Scholar 

  40. Marr AG, Ingraham JL, Squires CL (1964) Effect of the temperature of growth of Escherichia coli on the formation of β-galactosidase. J Bacteriol 87: 356–362.

    CAS  Google Scholar 

  41. Mazur P (1966) Physical and chemical basis of injury in single-celled microorganisms subjected to freezing and thawing. In: Merryman HT (ed) Cryobiology. Academic Press, New York, ch. 6.

    Google Scholar 

  42. McBryde CN (1911) A Bacteriological Study of Ham Souring. Bulletin No. 132. U.S. Bureau of Animal Industry, Beltsville, MD.

    Google Scholar 

  43. McMurrough I, Rose AH (1973) Effects of temperature variation on the fatty acid composition of a psychrophilic Candida species. J Bacteriol 114: 451–452.

    CAS  Google Scholar 

  44. Meer RR, Baker J, Bodyfelt FW, Griffiths MW (1991) Psychrotrophic Bacillus spp. in fluid milk products: A review. J Food Protect 54: 969–979.

    Google Scholar 

  45. Michener H, Elliott R (1964) Minimum growth temperatures for food-poisoning, fecal-indicator, and psychrophilic microorganisms. Adv Food Res 13: 349–396.

    CAS  Google Scholar 

  46. Miller AJ, Bayles DO, Eblen S (2000) Cold shock induction of thermal sensitivity in Listeria monocytogenes. Appl Environ Microbiol 66: 4345–4350.

    Article  CAS  Google Scholar 

  47. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39: 144–167.

    CAS  Google Scholar 

  48. Morita RY, Albright LJ (1965) Cell yields of Vibrio marinus, an obligate psychrophile, at low temperatures. Can J Microbiol 11: 221–227.

    CAS  Google Scholar 

  49. Mossel DAA, Jansma M, De Waart J (1981) Growth potential of 114 strains of epidemiologically most common salmonellae and arizonae between 3 and 17 °C. In: Roberts TA, Hobbs G, Christian JHB, Skovgaard N (eds) Psychrotrophic Microorganisms in Spoilage and Pathogenicity. Academic Press, New York, pp. 29–37.

    Google Scholar 

  50. Mossel DAA, Zwart H (1960) The rapid tentative recognition of psychrotrophic types among Enterobacteriaceae isolated from foods. J Appl Bacteriol 23: 183–188.

    Google Scholar 

  51. Nashif SA, Nelson FE (1953) The lipase of Pseudomonas fragi. I. Characterization of the enzyme. J Dairy Sci 36: 459–470.

    CAS  Google Scholar 

  52. Nashif SA, Nelson FE (1953) The lipase of Pseudomonas fragi. II. Factors affecting lipase production. J Dairy Sci 36: 471–480.

    CAS  Google Scholar 

  53. Neely WB (1960) Dextran: Structure and synthesis. Adv Carbohydr Chem 15: 341–369.

    CAS  Google Scholar 

  54. Nichols DS, Presser KA, Olley J, Ross T, McMeekin TA (2002) Variation of branched-chain fatty acids marks the normal physiological range for growth in Listeria monocytogenes. Appl Environ Microbiol 68: 2809–2813.

    Article  CAS  Google Scholar 

  55. Olsen RH, Jezeski JJ (1963) Some effects of carbon source, aeration, and temperature on growth of a psychrophilic strain of Pseudomonas fluorescens. J Bacteriol 86: 429–433.

    CAS  Google Scholar 

  56. Peterson AC, Gunderson MF (1960) Some characteristics of proteolytic enzymes from Pseudomonas fluorescens. Appl Microbiol 8: 98–104.

    CAS  Google Scholar 

  57. Reuter G (1981) Psychrotrophic lactobacilli in meat products. In: Roberts TA, Hobbs G, Christian JHB, Skovgaard N (eds) Psychrotrophic Microorganisms in Spoilage and Pathogenicity. Academic Press, New York, pp. 253–258.

    Google Scholar 

  58. Rose AH (1968) Physiology of microorganisms at low temperature. J Appl Bacteriol 31: 1–11.

    CAS  Google Scholar 

  59. Russell NJ (1971) Alteration in fatty acid chain length in Micrococcus cryophilus grown at different temperatures. Biochim Biophys Acta 231: 254–256.

    CAS  Google Scholar 

  60. Scott WJ (1962) Availablewater and microbial growth. In: Proceedings, Low Temperature Microbiology Symposium — 1962. Campbell Soup Co, Camden, NJ, pp. 89–105.

    Google Scholar 

  61. Sinclair NA, Stokes JL (1963) Role of oxygen in the high cell yields of psychrophiles and mesophiles at low temperatures. J Bacteriol 85: 164–167.

    CAS  Google Scholar 

  62. Stead D, Park SF (2000) Roles of Fe superoxide dismutase and catalase in resistance of Campylobacter coli to freeze-thaw stress. Appl Environ Microbiol 66: 3110–3112.

    Article  CAS  Google Scholar 

  63. Stokes JL (1967) Heat-sensitive enzymes and enzyme synthesis in psychrophilic microorganisms. In: Prosser CL (ed) Molecular Mechanisms of Temperature Adaptation, Pub. No. 84. American Association for the Advancement of Science, Washington, DC., pp. 311–323.

    Google Scholar 

  64. Udaka S, Horiuchi T (1965) Mutants of Escherichia coli having temperature sensitive regulatory mechanism in the formation of arginine biosynthetic enzymes. Biochem Biophys Res Commun 19: 156–160.

    Article  CAS  Google Scholar 

  65. Uffen RL, Canale-Parola E (1966) Temperature-dependent pigment production by Bacillus cereus var. alesi. Can J Microbiol 12: 590–593.

    CAS  Google Scholar 

  66. Upadhyay J, Stokes JL (1962) Anaerobic growth of psychrophilic bacteria. J Bacteriol 83: 270–275.

    CAS  Google Scholar 

  67. Upadhyay J, Stokes JL (1963) Temperature-sensitive formic hydrogenlyase in a psychrophilic bacterium. J Bacteriol 85: 177–185.

    CAS  Google Scholar 

  68. Wemekamp-Kamphuis HH, Karatzas AK, Wouters JA, Abee T (2002) Enhanced levels of cold shock proteins in Listeria monocytogenes LO28 upon exposure to low temperature and high hydrostatic pressure. Appl Environ Microbiol 68: 456–463.

    Article  CAS  Google Scholar 

  69. Wiebe WJ, Sheldon WM Jr, Pomeroy LR (1992) Bacterial growth in the cold: Evidence for an enhanced substrate requirement. Appl Environ Microbiol 58: 359–364.

    CAS  Google Scholar 

  70. Wilkins PO (1973) Psychrotrophic Gram-positive bacteria: Temperature effects on growth and solute uptake. Can J Microbiol 19: 909–915.

    Article  CAS  Google Scholar 

  71. Wilkins PO, Bourgeois R, Murray RG (1972) Psychrotrophic properties of Listeria monocytogenes. Can J Microbiol 18: 543–551.

    Article  CAS  Google Scholar 

  72. Williams RP, Goldschmidt ME, Gott CL (1965) Inhibition by temperature of the terminal step in biosynthesis of prodigiosin. Biochem Biophys Res Commun 19: 177–181.

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

(2009). Protezione degli alimenti mediante basse temperature e caratteristiche dei microrganismi psicrotrofi. In: Pulvirenti, A. (eds) Microbiologia degli alimenti. Food. Springer, Milano. https://doi.org/10.1007/978-88-470-0786-4_16

Download citation

Publish with us

Policies and ethics