Skip to main content

Microbiome Data Mining for Microbial Interactions and Relationships

  • Chapter
  • First Online:
Big Data Analytics

Abstract

The study of how microbial species coexist and interact in a host-associated environment or a natural environment is crucial to advance basic microbiology science and the understanding of human health and diseases. Researchers have started to infer common interspecies interactions and species–phenotype relations such as competitive and cooperative interactions leveraging to big microbiome data. These endeavors have facilitated the discovery of previously unknown principles of microbial world and expedited the understanding of the disease mechanism. In this review, we will summarize current computational efforts in microbiome data mining for discovering microbial interactions and relationships including dimension reduction and data visualization, association analysis, microbial network reconstruction, as well as dynamic modeling and simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6(2):e1000667

    Article  Google Scholar 

  2. Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  Google Scholar 

  3. Cho I et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488(7413):621–626

    Article  Google Scholar 

  4. Lin J, Wilbur WJ (2007) PubMed related articles: a probabilistic topic-based model for content similarity. BMC Bioinform 8

    Google Scholar 

  5. Abubucker S et al (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8(6):e1002358

    Article  Google Scholar 

  6. Jiang X et al (2012) Functional biogeography of ocean microbes revealed through non-negative matrix factorization. PLoS ONE 7(9):e43866

    Article  Google Scholar 

  7. Karlsson FH et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103

    Article  Google Scholar 

  8. Morgan, X.C. and C. Huttenhower, Chapter 12: Human microbiome analysis. PLoS Comput Biol, 2012. 8(12): p. e1002808

    Google Scholar 

  9. Ren TT et al (2013) 16S rRNA survey revealed complex bacterial communities and evidence of bacterial interference on human adenoids. Environ Microbiol 15(2):535–547

    Article  Google Scholar 

  10. Chaffron S et al (2010) A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res 20(7):947–959

    Article  Google Scholar 

  11. Carr R, Borenstein E (2012) NetSeed: a network-based reverse-ecology tool for calculating the metabolic interface of an organism with its environment. Bioinformatics 28(5):734–735

    Article  Google Scholar 

  12. Greenblum S et al (2013) Towards a predictive systems-level model of the human microbiome: progress, challenges, and opportunities. Curr Opin Biotechnol 24(4):810–820

    Article  Google Scholar 

  13. Shoaie, S., et al., Understanding the interactions between bacteria in the human gut through metabolic modeling. Scientific Reports, 2013. 3

    Google Scholar 

  14. Freilich S et al (2010) The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res 38(12):3857–3868

    Article  Google Scholar 

  15. Patel PV et al (2010) Analysis of membrane proteins in metagenomics: Networks of correlated environmental features and protein families. Genome Res 20(7):960–971

    Article  Google Scholar 

  16. Temperton B et al (2011) Novel analysis of oceanic surface water metagenomes suggests importance of polyphosphate metabolism in oligotrophic environments. PLoS ONE 6(1):e16499

    Article  MathSciNet  Google Scholar 

  17. Jiang X, Weitz JS, Dushoff J (2012) A non-negative matrix factorization framework for identifying modular patterns in metagenomic profile data. J Math Biol 64(4):697–711

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen X et al (2012) Estimating functional groups in human gut microbiome with probabilistic topic models. IEEE Trans Nanobiosci 11(3):203–215

    Article  Google Scholar 

  19. Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Article  Google Scholar 

  20. Yatsunenko T et al (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    Google Scholar 

  21. Wu GD et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108

    Article  Google Scholar 

  22. Hildebrand F et al (2013) Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol 14(1):R4

    Article  Google Scholar 

  23. Koren O et al (2013) A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput Biol 9(1):e1002863

    Article  Google Scholar 

  24. Moeller AH et al (2012) Chimpanzees and humans harbour compositionally similar gut enterotypes. Nat Commun 3:1179

    Article  Google Scholar 

  25. Jeffery IB et al (2012) Categorization of the gut microbiota: enterotypes or gradients? Nat Rev Microbiol 10(9):591–592

    Article  Google Scholar 

  26. Siezen RJ, Kleerebezem M (2011) The human gut microbiome: are we our enterotypes? Microb Biotechnol 4(5):550–553

    Article  Google Scholar 

  27. Jiang X et al (2012) Manifold learning reveals nonlinear structure in metagenomic profiles. In: IEEE BIBM 2012

    Google Scholar 

  28. Chen X et al (2012) Exploiting the functional and taxonomic structure of genomic data by probabilistic topic modeling. IEEE-ACM Trans Comput Biol Bioinform 9(4):980–991

    Article  Google Scholar 

  29. Holmes I, Harris K, Quince C (2012) Dirichlet multinomial mixtures: generative models for microbial metagenomics. Plos ONE 7(2)

    Google Scholar 

  30. Gianoulis TA et al (2009) Quantifying environmental adaptation of metabolic pathways in metagenomics. Proc Natl Acad Sci USA 106(5):1374–1379

    Article  Google Scholar 

  31. Raes J et al (2011) Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data. Mol Syst Biol 7:473

    Article  Google Scholar 

  32. Friedman J, Alm EJ (2012) Inferring correlation networks from genomic survey data. PLoS Comput Biol 8(9):e1002687

    Article  Google Scholar 

  33. Reshef DN et al (2011) Detecting novel associations in large data sets. Science 334(6062):1518–1524

    Article  Google Scholar 

  34. Koren O et al (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150(3):470–480

    Article  Google Scholar 

  35. Anderson MJ et al (2003) Biochemical and toxicopathic biomarkers assessed in smallmouth bass recovered from a polychlorinated biphenyl-contaminated river. Biomarkers 8(5):371–393

    Article  Google Scholar 

  36. Hinton D et al (2003) ‘Hit by the wind’ and temperature-shift panic among Vietnamese refugees. Transcult Psychiatry 40(3):342–376

    Article  Google Scholar 

  37. Kamita SG et al (2003) Juvenile hormone (JH) esterase: why are you so JH specific? Insect Biochem Mol Biol 33(12):1261–1273

    Article  Google Scholar 

  38. Chaffron S et al (2010) A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res 20(7):947–959

    Article  Google Scholar 

  39. Zupancic M et al (2012) Analysis of the gut microbiota in the old order amish and its relation to the metabolic syndrome. PLoS ONE 7(8):e43052

    Google Scholar 

  40. Faust K et al (2012) Microbial co-occurrence relationships in the human microbiome. Plos Comput Biol 8(7)

    Google Scholar 

  41. Lockhart R et al (2014) A significance test for the Lasso. Ann Stat 42(2):413–468

    Article  MathSciNet  MATH  Google Scholar 

  42. Negi JS et al (2013) Development of solid lipid nanoparticles (SLNs) of lopinavir using hot self nano-emulsification (SNE) technique. Eur J Pharm Sci 48(1–2):231–239

    Article  Google Scholar 

  43. Xie B et al (2011) m-SNE: multiview stochastic neighbor embedding. IEEE Trans Syst Man Cybern B Cybern

    Google Scholar 

  44. Greene G (2010) SNE: a place where research and practice meet. J Nutr Educ Behav 42(4):215

    Article  MathSciNet  Google Scholar 

  45. Friedman J, Alm EJ (2012) Inferring correlation networks from genomic survey data. Plos Comput Biol 8(9)

    Google Scholar 

  46. Jiang X et al (2014) Predicting microbial interactions using vector autoregressive model with graph regularization. IEEE/ACM Trans Comput Biol Bioinform (in press). doi:10.1109/TCBB.2014.2338298

    Google Scholar 

  47. Jiang X et al (2013) Inference of microbial interactions from time series data using vector autoregression model. In 2013 IEEE International conference on bioinformatics and biomedicine (BIBM). IEEE

    Google Scholar 

  48. Ishak N et al (2014) There is a specific response to pH by isolates of Haemophilus influenzae and this has a direct influence on biofilm formation. BMC Microbiol 14:47

    Article  Google Scholar 

  49. Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 108(Suppl 1):4554–4561

    Article  Google Scholar 

  50. Gerber GK (2014) The dynamic microbiome. FEBS Lett

    Google Scholar 

  51. Mounier J et al (2008) Microbial interactions within a cheese microbial community. Appl Environ Microbiol 74(1):172–181

    Article  Google Scholar 

  52. Hoffmann KH et al (2007) Power law rank-abundance models for marine phage communities. FEMS Microbiol Lett 273(2):224–228

    Article  Google Scholar 

  53. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248

    Article  Google Scholar 

  54. Stolyar S et al (2007) Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 3(1):92

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF IIP 1160960, NNS IIP 1332024, NSFC 61532008, and China National 12-5 plan 2012BAK24B01 and the international cooperation project of Hubei Province (No. 2014BHE0017) and the Self-determined Research Funds of CCNU from the Colleges’ Basic Research and Operation of MOE (No. CCNU16KFY04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Jiang, X., Hu, X. (2016). Microbiome Data Mining for Microbial Interactions and Relationships. In: Pyne, S., Rao, B., Rao, S. (eds) Big Data Analytics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3628-3_12

Download citation

Publish with us

Policies and ethics