Skip to main content

Melatonin as a Novel Therapeutic Agent Against Chemical Warfare Agents

  • Chapter
  • First Online:
Melatonin, Neuroprotective Agents and Antidepressant Therapy

Abstract

Chemical warfare agents (CWAs) can be used to kill, injure, or incapacitate an enemy in warfare but also against civilian population in terrorist attacks. The agents are able to generate free radicals and derived reactants, excitotoxicity process, or inflammation, and as consequence, they can cause neurological symptoms and damage in different organs. Nowadays, as there are not completely effective antidotes and treatments against all CWAs, we advance and propose that medical countermeasures against injury induced by CWAs would benefit from broad-spectrum multipotent molecules. Melatonin displays an exceptional multiplicity of actions and affords an important protective role in several pathological processes. Furthermore, melatonin presents low toxicity and high efficacy in reducing oxidative damage. Taking into account the multiple and beneficial properties of melatonin, the purpose of this chapter is to show its marked potential for improving human health against the most widely used CWAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AChE:

Acetylcholinesterase

BBB:

Blood-brain barrier

CNS:

Central nervous system

CWAs:

Chemical warfare agents

GSH:

Glutathione

HAT:

Hydrogen atom transfer

HOCl:

Hypochlorous acid

iNOS:

Inducible isoform of nitric oxide synthase

NO :

Nitric oxide anion

ONOO :

Anion peroxynitrite

OPs:

Organophosphates

PARP:

Poly(adenosine diphosphate ribose) polymerase

RONS:

Reactive oxygen and nitrogen species

ROS:

Reactive oxygen species

References

  1. North Atlantic Treaty Organization. NATO handbook on the medical aspects of NBC defensive operations, vol. III: chemical. Brussels: NATO Standardization Office; 2005.

    Google Scholar 

  2. Smith M, Stone W, Guo R, Ward P, Suntres Z, Mukherjee S, et al. Vesicants and oxidative stress. In: Romano JJ, Lukey B, Salem H, editors. Chemical warfare agents: chemistry, pharmacology, toxicology and therapeutics. Boca Ratón: CRC Press; 2008. p. 247–92.

    Google Scholar 

  3. Tan DX, Manchester LC, Reiter RJ, Plummer BF, Limson J, Weintraub ST, et al. Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radical Biol Med. 2000;29:1177–85.

    Article  CAS  Google Scholar 

  4. Reiter RJ, Tan DX, Manchester LC, Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys. 2001;34:237–56.

    Article  CAS  PubMed  Google Scholar 

  5. Tan D, Chen L, Poeggeler B, Manchester L, Reiter R. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J. 1993;1:57–60.

    Google Scholar 

  6. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin – a pleiotropic, orchestrating regulator molecule. Prog Neurobiol. 2011;93:350–84.

    Article  CAS  PubMed  Google Scholar 

  7. Pohanka M. Impact of melatonin on immunity: a review. Cent Eur J Med. 2013;8:369–76.

    CAS  Google Scholar 

  8. Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27:101–10.

    Article  CAS  PubMed  Google Scholar 

  9. Nosjean O, Ferro M, Coge F, Beauverger P, Henlin JM, Lefoulon F, et al. Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem. 2000;275:31311–7.

    Article  CAS  PubMed  Google Scholar 

  10. Rafii-El-Idrissi M, Calvo JR, Harmouch A, Garcia-Maurino S, Guerrero JM. Specific binding of melatonin by purified cell nuclei from spleen and thymus of the rat. J Neuroimmunol. 1998;86:190–7.

    Article  CAS  PubMed  Google Scholar 

  11. Hardeland R. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine. 2005;27:119–30.

    Article  CAS  PubMed  Google Scholar 

  12. Reiter RJ. Interactions of the pineal hormone melatonin with oxygen-centered free radicals: a brief review. Braz J Med Biol Res. 1993;26:1141–55.

    CAS  PubMed  Google Scholar 

  13. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res. 2007;42:28–42.

    Article  CAS  PubMed  Google Scholar 

  14. Costa EJ, Lopes RH, Lamy-Freund MT. Permeability of pure lipid bilayers to melatonin. J Pineal Res. 1995;19:123–6.

    Article  CAS  PubMed  Google Scholar 

  15. Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol. 2009;44:175–200.

    Article  CAS  Google Scholar 

  16. Şener G, Şehirli AÖ, Ayanoğlu-Dülger G. Protective effects of melatonin, vitamin E and N-acetylcysteine against acetaminophen toxicity in mice: a comparative study. J Pineal Res. 2003;35:61–8.

    Article  PubMed  Google Scholar 

  17. Mayo JC, Tan DX, Sainz RM, Natarajan M, Lopez-Burillo S, Reiter RJ. Protection against oxidative protein damage induced by metal-catalyzed reaction or alkylperoxyl radicals: comparative effects of melatonin and other antioxidants. BBA-Gen Subjects. 2003;1620:139–50.

    Article  CAS  Google Scholar 

  18. Shaker ME, Houssen ME, Abo-Hashem EM, Ibrahim TM. Comparison of vitamin E, L-carnitine and melatonin in ameliorating carbon tetrachloride and diabetes induced hepatic oxidative stress. J Physiol Biochem. 2009;65:225–33.

    Article  CAS  PubMed  Google Scholar 

  19. Romero A, Ramos E, Castellano V, Martínez MA, Ares I, Martínez M, et al. Cytotoxicity induced by deltamethrin and its metabolites in SH-SY5Y cells can be differentially prevented by selected antioxidants. Toxicol in Vitro. 2012;26:823–30.

    Article  CAS  PubMed  Google Scholar 

  20. Seabra ML, Bignotto M, Pinto Jr LR, Tufik S. Randomized, double-blind clinical trial, controlled with placebo, of the toxicology of chronic melatonin treatment. J Pineal Res. 2000;29:193–200.

    Article  CAS  PubMed  Google Scholar 

  21. Newman-Taylor AJ, Morris AJ. Experience with mustard gas casualties. Lancet. 1991;337:242.

    Article  CAS  PubMed  Google Scholar 

  22. Requena L, Requena C, Sanchez M, Jaqueti G, Aguilar A, Sanchez-Yus E, et al. Chemical warfare. Cutaneous lesions from mustard gas. J Am Acad Dermatol. 1988;19:529–36.

    Article  CAS  PubMed  Google Scholar 

  23. Balali-Mood M, Hefazi M. The pharmacology, toxicology, and medical treatment of sulphur mustard poisoning. Fund Clin Pharmacol. 2005;19:297–315.

    Article  CAS  Google Scholar 

  24. Pita R, Vidal-Asensi S. Cutaneous and systemic toxicology of vesicants used in warfare. Acta Derm Sifiliograficas. 2010;101:7–18.

    Article  CAS  Google Scholar 

  25. Somani S. Toxicokinetics and toxicodynamics of mustard. In: Somani S, editor. Chemical warfare agents. San Diego: Academic; 1992. p. 13–50.

    Google Scholar 

  26. Graef I, Karnofsky DA, et al. The clinical and pathologic effects of the nitrogen and sulfur mustards in laboratory animals. Am J Pathol. 1948;24:1–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. King JR, Peters BP, Monteiro-Riviere NA. Laminin in the cutaneous basement membrane as a potential target in lewisite vesication. Toxicol Appl Pharm. 1994;126:164–73.

    Article  CAS  Google Scholar 

  28. Gilman A, Philips FS. The biological actions and therapeutic applications of the b-chloroethyl amines and sulfides. Science. 1946;103:409–36.

    Article  CAS  Google Scholar 

  29. Somani SM, Babu SR. Toxicodynamics of sulfur mustard. Int J Clin Pharm Th Toxicol. 1989;27:419–35.

    CAS  Google Scholar 

  30. Berger SJ, Sudar DC, Berger NA. Metabolic consequences of DNA damage: DNA damage induces alterations in glucose metabolism by activation of poly (ADP-ribose) polymerase. Biochem Bioph Res Co. 1986;134:227–32.

    Article  CAS  Google Scholar 

  31. Meier HL, Gross CL, Papirmeister B. 2,2′-dichlorodiethyl sulfide (sulfur mustard) decreases NAD+ levels in human leukocytes. Toxicol Lett. 1987;39:109–22.

    Article  CAS  PubMed  Google Scholar 

  32. Papirmeister B, Gross CL, Meier HL, Petrali JP, Johnson JB. Molecular basis for mustard-induced vesication. Fund Appl Toxicol. 1985;5:S134–49.

    Article  CAS  Google Scholar 

  33. Ludlum DB, Austin-Ritchie P, Hagopian M, Niu TQ, Yu D. Detection of sulfur mustard-induced DNA modifications. Chem Biol Interact. 1994;91:39–49.

    Article  CAS  PubMed  Google Scholar 

  34. Orrenius S, McConkey DJ, Bellomo G, Nicotera P. Role of Ca2+ in toxic cell killing. Trends Pharmacol Sci. 1989;10:281–5.

    Article  CAS  PubMed  Google Scholar 

  35. Miccadei S, Kyle ME, Gilfor D, Farber JL. Toxic consequence of the abrupt depletion of glutathione in cultured rat hepatocytes. Arch Biochem Biophys. 1988;265:311–20.

    Article  CAS  PubMed  Google Scholar 

  36. Jafari M. Dose and time-dependent effects of sulfur mustard on antioxidant system in liver and brain of rat. Toxicology. 2007;231:30–9.

    Article  CAS  PubMed  Google Scholar 

  37. Naghii MR. Sulfur mustard intoxication, oxidative stress, and antioxidants. Mil Med. 2002;167:573–5.

    CAS  PubMed  Google Scholar 

  38. Pant SC, Vijayaraghavan R, Kannan GM, Ganesan K. Sulphur mustard induced oxidative stress and its prevention by sodium 2,3-dimercapto propane sulphonic acid (DMPS) in mice. Biomed Environ Sci. 2000;13:225–32.

    CAS  PubMed  Google Scholar 

  39. Korkmaz A, Yaren H, Topal T, Oter S. Molecular targets against mustard toxicity: implication of cell surface receptors, peroxynitrite production, and PARP activation. Arch Toxicol. 2006;80:662–70.

    Article  CAS  PubMed  Google Scholar 

  40. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Szabo C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett. 2003;140–141:105–12.

    Article  CAS  PubMed  Google Scholar 

  42. Kehe K, Raithel K, Kreppel H, Jochum M, Worek F, Thiermann H. Inhibition of poly(ADP-ribose) polymerase (PARP) influences the mode of sulfur mustard (SM)-induced cell death in hacat cells. Arch Toxicol. 2008;82:461–70.

    Article  CAS  PubMed  Google Scholar 

  43. Korkmaz A, Kurt B, Yildirim I, Basal S, Topal T, Sadir S, et al. Effects of poly(ADP-ribose) polymerase inhibition in bladder damage caused by cyclophosphamide in rats. Exp Biol Med. 2008;233:338–43.

    Article  CAS  Google Scholar 

  44. Pohanka M. Antioxidants countermeasures against sulfur mustard. Mini Rev Med Chem. 2012;12:742–8.

    Article  CAS  PubMed  Google Scholar 

  45. Kumar O, Sugendran K, Vijayaraghavan R. Protective effect of various antioxidants on the toxicity of sulphur mustard administered to mice by inhalation or percutaneous routes. Chem Biol Interact. 2001;134:1–12.

    Article  CAS  PubMed  Google Scholar 

  46. Ortiz GG, Benitez-King GA, Rosales-Corral SA, Pacheco-Moises FP, Velazquez-Brizuela IE. Cellular and biochemical actions of melatonin which protect against free radicals: role in neurodegenerative disorders. Curr Neuropharmacol. 2008;6:203–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reiter RJ, Tan DX, Manchester LC, Lopez-Burillo S, Sainz RM, Mayo JC. Melatonin: detoxification of oxygen and nitrogen-based toxic reactants. Adv Exp Med Biol. 2003;527:539–48.

    Article  CAS  PubMed  Google Scholar 

  48. Ucar M, Korkmaz A, Reiter RJ, Yaren H, Öter S, Kurt B, et al. Melatonin alleviates lung damage induced by the chemical warfare agent nitrogen mustard. Toxicol Lett. 2007;173:124–31.

    Article  CAS  PubMed  Google Scholar 

  49. Sadir S, Deveci S, Korkmaz A, Oter S. Alpha-tocopherol, beta-carotene and melatonin administration protects cyclophosphamide-induced oxidative damage to bladder tissue in rats. Cell Biochem Funct. 2007;25:521–6.

    Article  CAS  PubMed  Google Scholar 

  50. Pohanka M, Pejchal J, Snopkova S, Havlickova K, Karasova JZ, Bostik P, et al. Ascorbic acid: an old player with a broad impact on body physiology including oxidative stress suppression and immunomodulation: a review. Mini Rev Med Chem. 2012;12:35–43.

    Article  CAS  PubMed  Google Scholar 

  51. Mauriz JL, Collado PS, Veneroso C, Reiter RJ, Gonzalez-Gallego J. A review of the molecular aspects of melatonin’s anti-inflammatory actions: recent insights and new perspectives. J Pineal Res. 2012;54:1–14.

    PubMed  Google Scholar 

  52. Kunak ZI, Macit E, Yaren H, Yaman H, Cakir E, Aydin I, et al. Protective effects of melatonin and S-methylisothiourea on mechlorethamine induced nephrotoxicity. J Surg Res. 2012;175:e17–23.

    Article  CAS  PubMed  Google Scholar 

  53. Macit E, Yaren H, Aydin I, Kunak ZI, Yaman H, Onguru O, et al. The protective effect of melatonin and S-methylisothiourea treatments in nitrogen mustard induced lung toxicity in rats. Environ Toxicol Pharmacol. 2013;36:1283–90.

    Article  CAS  PubMed  Google Scholar 

  54. Maynard R. Mustard gas. In: Marrs T, Maynard R, Sidell F, editors. Chemical warfare agents: toxicology and treatment. New York: Wiley; 2007. p. 375–407.

    Chapter  Google Scholar 

  55. Malaviya R, Sunil VR, Cervelli J, Anderson DR, Holmes WW, Conti ML, et al. Inflammatory effects of inhaled sulfur mustard in rat lung. Toxicol Appl Pharmacol. 2010;248:89–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shohrati M, Ghanei M, Shamspour N, Jafari M. Activity and function in lung injuries due to sulphur mustard. Biomarkers. 2008;13:728–33.

    Article  CAS  PubMed  Google Scholar 

  57. Hosseini-khalili A, Haines DD, Modirian E, Soroush M, Khateri S, Joshi R, et al. Mustard gas exposure and carcinogenesis of lung. Mutat Res. 2009;678:1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pohanka M, Sobotka J, Jilkova M, Stetina R. Oxidative stress after sulfur mustard intoxication and its reduction by melatonin: efficacy of antioxidant therapy during serious intoxication. Drug Chem Toxicol. 2011;34:85–91.

    Article  CAS  PubMed  Google Scholar 

  59. Korkmaz A, Tan DX, Reiter RJ. Acute and delayed sulfur mustard toxicity; novel mechanisms and future studies. Interdiscipl Toxicol. 2008;1:22–6.

    Google Scholar 

  60. Rodriguez C, Mayo JC, Sainz RM, Antolín I, Herrera F, Martín V, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36:1–9.

    Article  CAS  PubMed  Google Scholar 

  61. Tang FR, Loke WK. Sulfur mustard and respiratory diseases. Crit Rev Toxicol. 2012;42:688–702.

    Article  CAS  PubMed  Google Scholar 

  62. Weinberger B, Laskin JD, Sunil VR, Sinko PJ, Heck DE, Laskin DL. Sulfur mustard-induced pulmonary injury: therapeutic approaches to mitigating toxicity. Pulm Pharmacol Ther. 2011;24:92–9.

    Article  CAS  PubMed  Google Scholar 

  63. Galano A, Tan DX, Reiter RJ. Melatonin as a naturally against oxidative stress: a physicochemical examination. J Pineal Res. 2011;51:1–16.

    Article  CAS  PubMed  Google Scholar 

  64. Limson J, Nyokong T, Daya S. The interaction of melatonin and its precursors with aluminium, cadmium, copper, iron, lead, and zinc: an adsorptive voltammetric study. J Pineal Res. 1998;24:15–21.

    Article  CAS  PubMed  Google Scholar 

  65. Bajgar J. Complex view on poisoning with nerve agents and organophosphates. Acta Med. 2005;48:3–21.

    CAS  Google Scholar 

  66. Koelle GB. Pharmacology of organophosphates. J Appl Toxicol. 1994;14:105–9.

    Article  CAS  PubMed  Google Scholar 

  67. Watson A, Opresko D, Young R, Hauschild V, King J, Bakshi K. Organophosphate nerve agents. In: Gupta RC, editor. Handbook of toxicology of chemical warfare agents. London: Academic; 2009. p. 43–68.

    Chapter  Google Scholar 

  68. Grob D, Harvey AM. The effects and treatment of nerve gas poisoning. Am J Med. 1953;14:52–63.

    Article  CAS  PubMed  Google Scholar 

  69. Marrs TC. Organophosphate poisoning. Pharmacol Therapeut. 1993;58:51–66.

    Article  CAS  Google Scholar 

  70. Dunn MA, Sidell FR. Progress in medical defense against nerve agents. JAMA. 1989;262:649–52.

    Article  CAS  PubMed  Google Scholar 

  71. Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv Clin Chem. 2004;38:151–216.

    Article  CAS  PubMed  Google Scholar 

  72. McDonough Jr JH, Shih TM. Neuropharmacological mechanisms of nerve agent-induced seizure and neuropathology. Neurosci Biobehav R. 1997;21:559–79.

    Article  CAS  Google Scholar 

  73. Shih TM, Duniho SM, McDonough JH. Control of nerve agent-induced seizures is critical for neuroprotection and survival. Toxicol Appl Pharmacol. 2003;188:69–80.

    Article  CAS  PubMed  Google Scholar 

  74. Aroniadou-Anderjaska V, Figueiredo TH, Apland JP, Qashu F, Braga MF. Primary brain targets of nerve agents: the role of the amygdala in comparison to the hippocampus. Neurotoxicology. 2009;30:772–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yajeya J, De La Fuente A, Criado JM, Bajo V, Sanchez-Riolobos A, Heredia M. Muscarinic agonist carbachol depresses excitatory synaptic transmission in the rat basolateral amygdala in vitro. Synapse. 2000;38:151–60.

    Article  CAS  PubMed  Google Scholar 

  76. Salgado H, Bellay T, Nichols JA, Bose M, Martinolich L, Perrotti L, et al. Muscarinic M2 and M1 receptors reduce GABA release by Ca2+ channel modulation through activation of PI3K/Ca2+-independent and PLC/Ca2+-dependent PKC. J Neurophysiol. 2007;98:952–65.

    Article  CAS  PubMed  Google Scholar 

  77. Garthwaite J, Garthwaite G, Palmer RM, Moncada S. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol. 1989;172:413–6.

    Article  CAS  PubMed  Google Scholar 

  78. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–42.

    CAS  PubMed  Google Scholar 

  79. Kovacic P. Mechanism of organophosphates (nerve gases and pesticides) and antidotes: electron transfer and oxidative stress. Curr Med Chem. 2003;10:2705–9.

    Article  CAS  PubMed  Google Scholar 

  80. Milatovic D, Gupta R, Zaja-Milatovic S, Aschner M. Excitotoxicity, oxidative stress, and neuronal injury. In: Gupta RC, editor. Handbook of toxicology of chemical warfare agents. London: Academic; 2009. p. 633–51.

    Chapter  Google Scholar 

  81. Gupta RC, Dettbarn W, Milatovi D. Skeletal muscle. In: Gupta RC, editor. Handbook of toxicology of chemical warfare agents. London: Academic; 2009. p. 509–31.

    Chapter  Google Scholar 

  82. Jacobsson SO, Cassel GE, Persson SA. Increased levels of nitrogen oxides and lipid peroxidation in the rat brain after soman-induced seizures. Arch Toxicol. 1999;73:269–73.

    Article  CAS  PubMed  Google Scholar 

  83. Abu-Qare AW, Abou-Donia MB. Combined exposure to sarin and pyridostigmine bromide increased levels of rat urinary 3-nitrotyrosine and 8-hydroxy-2′-deoxyguanosine, biomarkers of oxidative stress. Toxicol Lett. 2001;123:51–8.

    Article  CAS  PubMed  Google Scholar 

  84. Pohanka M, Romanek J, Pikula J. Acute poisoning with sarin causes alteration in oxidative homeostasis and biochemical markers in Wistar rats. J Appl Biomed. 2012;10:187–93.

    Article  CAS  Google Scholar 

  85. Martin V, Sainz RM, Antolin I, Mayo JC, Herrera F, Rodriguez C. Several antioxidant pathways are involved in astrocyte protection by melatonin. J Pineal Res. 2002;33:204–12.

    Article  CAS  PubMed  Google Scholar 

  86. Manda K, Ueno M, Anzai K. Cranial irradiation-induced inhibition of neurogenesis in hippocampal dentate gyrus of adult mice: attenuation by melatonin pretreatment. J Pineal Res. 2009;46:71–8.

    Article  CAS  PubMed  Google Scholar 

  87. Herrera F, Sainz RM, Mayo JC, Martin V, Antolin I, Rodriguez C. Glutamate induces oxidative stress not mediated by glutamate receptors or cystine transporters: protective effect of melatonin and other antioxidants. J Pineal Res. 2001;31:356–62.

    Article  CAS  PubMed  Google Scholar 

  88. Beni SM, Kohen R, Reiter RJ, Tan DX, Shohami E. Melatonin-induced neuroprotection after closed head injury is associated with increased brain antioxidants and attenuated late-phase activation of NF-kB and AP-1. FASEB J. 2004;18:149–51.

    CAS  PubMed  Google Scholar 

  89. Das A, Belagodu A, Reiter RJ, Ray SK, Banik NL. Cytoprotective effects of melatonin on C6 astroglial cells exposed to glutamate excitotoxicity and oxidative stress. J Pineal Res. 2008;45:117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tapias V, Escames G, Lopez LC, Lopez A, Camacho E, Carrion MD, et al. Melatonin and its brain metabolite N(1)-acetyl-5-methoxykynuramine prevent mitochondrial nitric oxide synthase induction in Parkinsonian mice. J Neurosci Res. 2009;87:3002–10.

    Article  CAS  PubMed  Google Scholar 

  91. Das A, McDowell M, Pava MJ, Smith JA, Reiter RJ, Woodward JJ, et al. The inhibition of apoptosis by melatonin in VSC4.1 motoneurons exposed to oxidative stress, glutamate excitotoxicity, or TNF-alpha toxicity involves membrane melatonin receptors. J Pineal Res. 2010;48:157–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Maestroni GJ, Zisapel N, et al. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol. 2008;85:335–53.

    Article  CAS  PubMed  Google Scholar 

  93. Dubocovich ML, Rivera-Bermudez MA, Gerdin MJ, Masana MI. Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front Biosci. 2003;8:d1093–108.

    Article  CAS  PubMed  Google Scholar 

  94. Witt-Enderby PA, Radio NM, Doctor JS, Davis VL. Therapeutic treatments potentially mediated by melatonin receptors: potential clinical uses in the prevention of osteoporosis, cancer and as an adjuvant therapy. J Pineal Res. 2006;41:297–305.

    Article  CAS  PubMed  Google Scholar 

  95. Dhote F, Peinnequin A, Carpentier P, Baille V, Delacour C, Foquin A, et al. Prolonged inflammatory gene response following soman-induced seizures in mice. Toxicology. 2007;238:166–76.

    Article  CAS  PubMed  Google Scholar 

  96. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7:31–40.

    Article  CAS  PubMed  Google Scholar 

  97. Collombet JM. Nerve agent intoxication: recent neuropathophysiological findings and subsequent impact on medical management prospects. Toxicol Appl Pharmacol. 2011;255:229–41.

    Article  CAS  PubMed  Google Scholar 

  98. Viviani B, Bartesaghi S, Corsini E, Galli CL, Marinovich M. Cytokines role in neurodegenerative events. Toxicol Lett. 2004;149:85–9.

    Article  CAS  PubMed  Google Scholar 

  99. Vezzani A. Inflammation and epilepsy. Epilepsy Curr. 2005;5:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ye ZC, Sontheimer H. Cytokine modulation of glial glutamate uptake: a possible involvement of nitric oxide. Neuroreport. 1996;7:2181–5.

    Article  CAS  PubMed  Google Scholar 

  101. Abdel-Rahman A, Shetty AK, Abou-Donia MB. Acute exposure to sarin increases blood brain barrier permeability and induces neuropathological changes in the rat brain: dose–response relationships. Neuroscience. 2002;113:721–41.

    Article  CAS  PubMed  Google Scholar 

  102. Dillman 3rd JF, Phillips CS, Kniffin DM, Tompkins CP, Hamilton TA, Kan RK. Gene expression profiling of rat hippocampus following exposure to the acetylcholinesterase inhibitor soman. Chem Res Toxicol. 2009;22:633–8.

    Article  CAS  PubMed  Google Scholar 

  103. Spradling KD, Lumley LA, Robison CL, Meyerhoff JL, Dillman 3rd JF. Transcriptional analysis of rat piriform cortex following exposure to the organophosphonate anticholinesterase sarin and induction of seizures. J Neuroinflamm. 2011;8:83.

    Article  CAS  Google Scholar 

  104. Collombet JM, Four E, Bernabe D, Masqueliez C, Burckhart MF, Baille V, et al. Soman poisoning increases neural progenitor proliferation and induces long-term glial activation in mouse brain. Toxicology. 2005;208:319–34.

    Article  CAS  PubMed  Google Scholar 

  105. Collombet JM, Four E, Fauquette W, Burckhart MF, Masqueliez C, Bernabe D, et al. Soman poisoning induces delayed astrogliotic scar and angiogenesis in damaged mouse brain areas. Neurotoxicology. 2007;28:38–48.

    Article  CAS  PubMed  Google Scholar 

  106. Zimmer LA, Ennis M, Shipley MT. Soman-induced seizures rapidly activate astrocytes and microglia in discrete brain regions. J Comp Neurol. 1997;378:482–92.

    Article  CAS  PubMed  Google Scholar 

  107. Williams AJ, Berti R, Yao C, Price RA, Velarde LC, Koplovitz I, et al. Central neuro-inflammatory gene response following soman exposure in the rat. Neurosci Lett. 2003;349:147–50.

    Article  CAS  PubMed  Google Scholar 

  108. Svensson I, Waara L, Johansson L, Bucht A, Cassel G. Soman-induced interleukin-1 beta mRNA and protein in rat brain. Neurotoxicology. 2001;22:355–62.

    Article  CAS  PubMed  Google Scholar 

  109. Damodaran T. Molecular and transcriptional responses to sarin exposure. In: Gupta RC, editor. Handbook of toxicology of chemical warfare agents. London: Academic; 2009. p. 665–82.

    Chapter  Google Scholar 

  110. Tan DX, Manchester LC, Reiter RJ, Plummer BF, Hardies LJ, Weintraub ST, et al. A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Bioph Res Co. 1998;253:614–20.

    Article  CAS  Google Scholar 

  111. Spencer JP, Whiteman M, Jenner A, Halliwell B. Nitrite-induced deamination and hypochlorite-induced oxidation of DNA in intact human respiratory tract epithelial cells. Free Radical Bio Med. 2000;28:1039–50.

    Article  CAS  Google Scholar 

  112. Zavodnik IB, Lapshina EA, Zavodnik LB, Łabieniec M, Bryszewska M, Reiter RJ. Hypochlorous acid-induced oxidative stress in chinese hamster b14 cells: viability, DNA and protein damage and the protective action of melatonin. Mutat Res Gen Tox En. 2004;559:39–48.

    Article  CAS  Google Scholar 

  113. Babad H, Zeiler AG. Chemistry of phosgene. Chem Rev. 1973;73:75–91.

    Article  CAS  Google Scholar 

  114. Sciuto AM, Strickland PT, Kennedy TP, Gurtner GH. Postexposure treatment with aminophylline protects against phosgene-induced acute lung injury. Exp Lung Res. 1997;23:317–32.

    Article  CAS  PubMed  Google Scholar 

  115. Sciuto AM. Assessment of early acute lung injury in rodents exposed to phosgene. Arch Toxicol. 1998;72:283–8.

    Article  CAS  PubMed  Google Scholar 

  116. Zhang L, Shen J, Gan ZY, He DK, Zhong ZY. Protective effect of melatonin in rats with phosgene-induced lung injury. Chin J Ind Hygiene Occup Dis. 2012;30:834–8.

    CAS  Google Scholar 

  117. Yip HK, Chang YC, Wallace CG, Chang LT, Tsai TH, Chen YL, et al. Melatonin treatment improves adipose-derived mesenchymal stem cell therapy for acute lung ischemia-reperfusion injury. J Pineal Res. 2013;54:207–21.

    Article  CAS  PubMed  Google Scholar 

  118. Huai JP, Sun XC, Chen MJ, Jin Y, Ye XH, Wu JS, et al. Melatonin attenuates acute pancreatitis-associated lung injury in rats by modulating interleukin 22. World J Gastroenterol. 2012;18:5122–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang Z, Gao L, Ding CH, Ma WZ, Gu WW, Ma YL. Protective function of melatonin to acute lung injury and its mechanisms in rats caused by oleic acid. Chin J Appl Physiol. 2011;27:480–3.

    Google Scholar 

  120. Bhattacharya R, Flora J. Cyanide toxicity and its treatment. In: Rc G, editor. Handbook of toxicology of chemical warfare agents. London: Academic; 2009. p. 255–70.

    Chapter  Google Scholar 

  121. Yamamoto H, Tang HW. Preventive effect of melatonin against cyanide-induced seizures and lipid peroxidation in mice. Neurosci Lett. 1996;207:89–92.

    Article  CAS  PubMed  Google Scholar 

  122. Yamamoto H, Tang HW. Antagonistic effect of melatonin against cyanide-induced seizures and acute lethality in mice. Toxicol Lett. 1996;87:19–24.

    Article  CAS  PubMed  Google Scholar 

  123. Yamamoto HA, Mohanan PV. Melatonin attenuates brain mitochondria DNA damage induced by potassium cyanide in vivo and in vitro. Toxicology. 2002;179:29–36.

    Article  CAS  PubMed  Google Scholar 

  124. Choi WI, Han SZ. Effects of melatonin on KCN-induced neurodegeneration in mice. Int J Neurosci. 2002;112:187–94.

    Article  PubMed  Google Scholar 

  125. Hara M, Iigo M, Ohtani-Kaneko R, Nakamura N, Suzuki T, Reiter RJ, et al. Administration of melatonin and related indoles prevents exercise-induced cellular oxidative changes in rats. Biol Signal. 1997;6:90–100.

    Article  CAS  Google Scholar 

  126. Maharaj DS, Walker RB, Glass BD, Daya S. 6-hydroxymelatonin protects against cyanide induced oxidative stress in rat brain homogenates. J Chem Neuroanat. 2003;26:103–7.

    Article  CAS  PubMed  Google Scholar 

  127. Maharaj DS, Limson JL, Daya S. 6-hydroxymelatonin converts Fe (III) to Fe (II) and reduces iron-induced lipid peroxidation. Life Sci. 2003;72:1367–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Romero PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Pita, R., Ramos, E., Marco-Contelles, J.L., Romero, A. (2016). Melatonin as a Novel Therapeutic Agent Against Chemical Warfare Agents. In: López-Muñoz, F., Srinivasan, V., de Berardis, D., Álamo, C., Kato, T. (eds) Melatonin, Neuroprotective Agents and Antidepressant Therapy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2803-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2803-5_14

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2801-1

  • Online ISBN: 978-81-322-2803-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics