Skip to main content

Enriching Nutrient Density in Staple Crops Using Modern “-Omics” Tools

  • Chapter
  • First Online:
Biofortification of Food Crops

Abstract

A sizeable proportion of the global population faces nutritional disorders. Notably, the poorest regions in the developing world share considerably large segment of malnourished people. Given the rising prevalence of nutritional disorders, sustainable solutions urgently need to be in place in order to tackle the menace of hidden hunger. An array of improvement strategies is suggested to meet the growing challenge. These strategies involve dietary diversification, food supplementation/fortification, and biofortification using nutritional breeding approaches, genetic engineering, and agronomic interventions. The mounting concerns about environmental safety and poor economic status of the target population further put a limit on the large-scale use of micronutrient-rich fertilizers. Hence, crop biofortification via conventional and molecular breeding stands to be the most economic, readily accessible, and globally accepted strategy. For some obvious reasons, staple crops that serve the daily dietary needs of the maximum population in the developing world are targeted for nutritional enhancement. As a prerequisite, survey of the germplasm pools is needed to quantify the exploitable genetic variation that exists in the crop gene pool. Further, modern omics approaches like genomics, proteomics, metabolomics, and ionomics will definitely advance our knowledge about the genetic makeup, molecular networks, and physiological alternations involved in the process of mineral accumulation and subsequent partitioning of minerals to edible plant parts. Similarly, engineering metabolic pathways through genetic modification holds great relevance for expediting the development of nutrient-dense food crops. We expect that the “omics” assisted nutritional breeding, as the most potential biofortification strategy, will be greatly helpful in achieving the nutritional security of over two billion nutrient-deficient people worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal S, Venkata VGNT, Kotla A, Mangrauthia SK, Neelamraju S (2014) Expression patterns of QTL based and other candidate genes in Madhukar × Swarna RILs with contrasting levels of iron and zinc in unpolished rice grains. Gene 546:430–436

    Article  CAS  Google Scholar 

  • Ahmad I, Mohammad F, Zeb A, Noorka IR, Farhatullah, Jadoon SA (2013) Determination and inheritance of phytic acid as marker in diverse genetic group of bread wheat. Am J Mol Biol 3:158–164

    Article  CAS  Google Scholar 

  • Anandan A, Rajiv G, Prakash M (2011) Genotypic variation and relationships between quality traits and trace elements in traditional and improved rice (Oryza sativa L.) genotypes. J Food Sci 76:H122–H129

    Article  CAS  Google Scholar 

  • Anuradha K, Agarwal S, Batchu AK, Babu AP, Swamy BPM, Longvah T, Sarla N (2012a) Evaluating rice germplasm for iron and zinc concentration in brown rice and seed dimensions. J Phytol 4:19–25

    CAS  Google Scholar 

  • Anuradha K, Agarwal S, Rao YV, Rao KV, Viraktamath BC, Sarla N (2012b) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna RILs. Gene 508:233–240

    Article  CAS  Google Scholar 

  • Azmach G, Gedil M, Menkir A, Spillane C (2013) Marker-trait association analysis of functional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines. BMC Plant Biol 13:227

    Article  CAS  Google Scholar 

  • Babu R, Rojas NP, Gao S, Yan J, Pixley K (2012) Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor Appl Genet 126:389–399

    Article  CAS  Google Scholar 

  • Banerjee S, Sharma DJ, Verulkar SB, Chandel G (2010) Use of in silico and semiquantitative RT-PCR approaches to develop nutrient rich rice (Oryza sativa L.). Indian J Biotechnol 9:203–212

    Google Scholar 

  • Baxter I, Ouzzani M, Orcun S, Kennedy B, Jandhyala SS, Salt DE (2007) Purdue ionomics information management system. An integrated functional genomics platform. Plant Physiol 143:600–6100

    Article  CAS  Google Scholar 

  • Baxter IR, Gustin JL, Settles AM, Hoekenga OA (2012) Ionomic characterization of maize kernels in the intermated B73 × Mo17 population. Crop Sci 53:208–220

    Article  CAS  Google Scholar 

  • Bohra A (2013) Emerging paradigms in genomics-based crop improvement. Sci World J 2013, 585467

    Article  CAS  Google Scholar 

  • Bohra A, Pandey MK, Jha UC, Singh B, Singh IP, Datta D, Chaturvedi SK, Nadarajan N, Varshney RK (2014a) Genomics-assisted breeding in the four major pulse crops of developing countries: present status and prospects. Theor Appl Genet 127:1263–1291

    Article  Google Scholar 

  • Bohra A, Jha UC, Kavi Kishor PB, Pandey S, Singh NP (2014b) Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities. Biotechnol Adv 32:1410–1428

    Article  CAS  Google Scholar 

  • Bohra A, Sahrawat KL, Kumar S, Joshi R, Parihar AK, Singh U, Singh D, Singh NP (2015) Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook. J Appl Genet 56:151–61

    Google Scholar 

  • Borill P, Connorton JM, Balk J, Miller AJ, Sanders D, Uauy C (2014) Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci 5:53

    Google Scholar 

  • Cakmak I, Ozkan H, Braun HJ, Welch RM, Romheld V (2000) Zinc and iron concentrations in seeds of wild, primitive and modern wheats. Food Nutr Bull 21:401e403

    Article  Google Scholar 

  • Cakmak I, Torun A, Özkan H, Millet E, Feldman M, Fahima T, Korol AB, Nevo E, Braun HJ, Ozkan H (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50:1047–1054

    Article  CAS  Google Scholar 

  • Calderini DF, Monasterio IO (2003) Are synthetic hexaploids a means of increasing grain element concentrations in wheat? Euphytica 134:169–178

    Article  CAS  Google Scholar 

  • Carvalho S, Vasconcelos M (2013) Producing more with less: ‘omics’ at the service of plant-based food biofortification. Food Res Int 54:961–971

    Article  CAS  Google Scholar 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    Article  CAS  Google Scholar 

  • Chandler K, Lipka AE, Owens BF, Li H, Buckler ES, Rocheford T, Gore MA (2013) Genetic analysis of visually scored orange kernel color in maize. Crop Sci 53:189–200

    Article  CAS  Google Scholar 

  • Chatzav M, Peleg Z, Ozturk L, Yazici A, Fahima T, Cakmak I, Saranga Y (2011) Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann Bot 105:1211–1220

    Article  CAS  Google Scholar 

  • Chhuneja P, Dhaliwal HS, Bains NS, Singh K (2006) Aegilops kotschyi and Ae. tauschii are the sources for high grain iron and zinc. Plant Breed 125:1–3

    Article  Google Scholar 

  • Chiangmai PN, Yodmingkhwan P, Nilprapruck P, Aekatasanawan C, Kanjanamaneesathian M (2011) Screening of phytic acid and inorganic phosphorus contents in corn inbred lines and F1 hybrids in tropical environment. Maydica 54:331–339

    Google Scholar 

  • Chilimba ADC, Young SD, Black CR, Rogerson KB, Ander EL, Watts MJ, Lammel J, Broadley MR (2011) Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Sci Rep 1:72

    Article  CAS  Google Scholar 

  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:1–21

    Article  Google Scholar 

  • Crossa J, de L Campos G, Pérez P et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    Article  CAS  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Hickey J, Burgueño J, Ornella L, Cerón-Rojas J et al. (2013). Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112:48–60

    Google Scholar 

  • Dai F, Wang J, Zhang S, Xu Z, Zhang G (2007) Genotypic and environmental variation in phytic acid content and its relation to protein content and malt quality in barley. Food Chem 105:606–611

    Article  CAS  Google Scholar 

  • Daneshbakhsh B, Khoshgoftarmanesh AH, Shariatmadari H, Cakmak I (2013) Phytosiderophore release by wheat genotypes differing in zinc deficiency tolerance grown with Zn-free nutrient solution as affected by salinity. J Plant Physiol 170:41–46

    Article  CAS  Google Scholar 

  • de Souza GA, de Carvalho JG, Rutzke M, Albrecht JC, Guilherme LR, Li L (2013) Evaluation of germplasm effect on Fe, Zn and Se content in wheat seedlings. Plant Sci 210:206–213

    Article  CAS  Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    Article  CAS  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129:635–643

    Article  CAS  Google Scholar 

  • Drinic SM, Ristic D, Sredojevic S, Dragicevic V, Ignjatovic Micic D, Delic N (2009) Genetic variation of phytate and inorganic phosphorus in maize population. Genetika 41:107–115

    Article  Google Scholar 

  • Drinic SM, Andjelkovic V, Micic DI (2012) Genetic diversity of maize landraces as sources of favorable traits. In: Caliskan M (ed) The molecular basis of plant genetic diversity. InTech, Rijeka, pp 89–112

    Google Scholar 

  • Evans A (2009) The feeding of the nine billion: global food security. Chatham House, London

    Google Scholar 

  • Febles CI, Arias A, Hardisson A, Rodriguez-Alvarez C, Sierra A (2002) Phytic acid level in wheat flours. J Cereal Sci 36:19–23

    Article  CAS  Google Scholar 

  • Feil B, Fossati D (1995) Mineral composition of triticale grains as related to grain yield and grain protein. Crop Sci 35:1426–1431

    Article  Google Scholar 

  • Fernandez MGS, Kapran I, Souley S, Abdou M, Maiga IH, Acharya CB, Hamblin MT, Kreso- vich S (2009) Collection and characterization of yellow endosperm sorghums from West Africa forbio- fortification. Genet Resour Crop Evol 56:991–1000

    Article  Google Scholar 

  • Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25:39–48

    Article  CAS  Google Scholar 

  • Ficco DBM, Riefolo C, Nicastro G, De Simone V, DiGesu AM, Beleggia R, Platini C, Cattivelli L, De Vita P (2009) Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crop Res 111:235–242

    Article  Google Scholar 

  • Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  CAS  Google Scholar 

  • Gande NK, Kundur PJ, Soman R, Ambati R, Ashwathanarayana R, Bekele BD, Shashidhar HE (2014) Identification of putative candidate gene markers for grain zinc content using recombinant inbred lines (RIL) population of IRRI38 X Jeerigesanna. Afr J Biotechnol 13:657–663

    Article  CAS  Google Scholar 

  • Garcia-Oliveira AL, Tan LB, Fu YC, Sun CQ (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51:84–92

    Article  CAS  Google Scholar 

  • Genc Y, Verbyla AP, Torun AA, Cakmak I, Willsmore K, Wallwork H, McDonald GK (2009) Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant Soil 310:67–75

    Article  CAS  Google Scholar 

  • Genc Y, Taylor J, Rongala J, Oldach K (2014) A major locus for chloride accumulation on chromosome 5A in bread wheat. PLoS One 9, e98845

    Article  CAS  Google Scholar 

  • Glahn RP, Cheng Z, Welch RM, Gregorio GB (2002) Comparison of iron bioavailability from 15 rice genotypes: studies using an in vitro digestion/caco-2 cell culture model. J Agric Food Chem 50:3586–3591

    Article  CAS  Google Scholar 

  • Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323–330

    Article  CAS  Google Scholar 

  • Graham R, Senadhira D, Beebe S, Iglesias C, Monasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crop Res 60:57–80

    Article  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Gregorio GB, Senadhira D, Htut H, Graham RD (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:382–386

    Article  Google Scholar 

  • Hamblin MT, Buckler ES, Jannink JL (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27:98–106

    Article  CAS  Google Scholar 

  • He WL, Feng Y, Wei YY, Yang XE, Shi CH, He ZL, Stoffella PJ (2013) Differential iron-bioavailability with relation to nutrient compositions in polished rice among selected Chinese genotypes using Caco-2 cell culture model. Int J Food Sci Nutr 64:822–829

    Article  CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Article  Google Scholar 

  • Heffner EL, Jannink J-L, Iwata H, Souza E, Sorrells ME (2011) Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci 51:2597–2606

    Article  Google Scholar 

  • Heslot N, Yang HP, Sorrells ME, Jannink JL (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146

    Article  Google Scholar 

  • Jahan GS, Hassan L, Begum SN, Islam SN (2013) Identification of iron rich rice genotypes in Bangladesh using chemical analysis. J Bangladesh Agric Univ 11:73–78

    Google Scholar 

  • Jarquín D, Kocak K, Posadas L, Hyma K, Jedlicka J, Graef G, Lorenz A (2014) Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics 15:740

    Article  Google Scholar 

  • Jegadeesan S, Yu KF, Poysa V, Gawalko E, Morrison MJ, Shi C, Cober E (2010) Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean [Glycine max (L.) Merr]. Theor Appl Genet 121:283–294

    Article  CAS  Google Scholar 

  • Jiang WZ (2008) Comparison of responses to Mn deficiency between the UK wheat genotypes Maris Butler, Paragon and the Australian wheat genotype C8MM. J Integr Plant Biol 50:457–465

    Article  CAS  Google Scholar 

  • Jiang WZ, Ireland CR (2005) Characterization of manganese use efficiency in UK wheat cultivars grown in a solution culture system and in the field. J Agric Sci 143:151–160

    Article  CAS  Google Scholar 

  • Jin T, Zhou J, Chen J, Zhu L, Zhao Y, Huang Y (2013) The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis. Breed Sci 63(3):317–324

    Article  CAS  Google Scholar 

  • Jonas E, Koning DJ (2013) Does genomic selection have a future in plant breeding? Trends Biotechnol 31:497–504

    Article  CAS  Google Scholar 

  • Joshi AK, Crossa J, Arun B, Chand R, Trethown R, Vargas M, Ortiz-Monasterio I (2010) Genotype × environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. Field Crop Res 116:268–277

    Article  Google Scholar 

  • Kandianis CB, Stevens R, Liu W, Palacios N, Montgomery K, Pixley K, White WS, Rocheford T (2013) Genetic architecture controlling variation in grain carotenoid composition and concentrations in two maize populations. Theor Appl Genet 126:2879–2895

    Article  CAS  Google Scholar 

  • Kumar AA, Reddy BVS, Sahrawat KL, Ramaiah B (2010) Combating micronutrient malnutrition: identification of commercial sorghum cultivars with high grain iron and zinc. SAT eJournal 8:1–5

    CAS  Google Scholar 

  • Li S, Tayie FAK, Young MF, Rocheford T, White WS (2007) Retention of provitamin A carotenoids in high β-carotene maize (Zea mays) during traditional African household processing. J Agric Food Chem 55:10744–10750

    Article  CAS  Google Scholar 

  • Li H, Liu H, Han Y, Wu X, Teng W, Liu G, Li W (2010) Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theor Appl Genet 120:1405–1413

    Article  CAS  Google Scholar 

  • Lipka AE, Gore MA, Magallanes-Lundback M, Mesberg A, Lin H, Tiede T, Chen C, Buell CR, Buckler ES, Rocheford T, DellaPenna D (2013a) Genome-wide association study and pathway-level analysis of tocochromanol levels in maize grain. G3: Genes Genomes Genet 3(8):1287–1299

    Article  CAS  Google Scholar 

  • Lipka AE, Magallanes-Lundback M, Mesberg A, Bradbury P, Angelovici R et al (2013b) High-resolution mapping of tocochromanol and carotenoid grain traits via NAM-GWAS reveals distinct genetic architectures in maize. Maize Genet Conf Abstr 54:P282

    Google Scholar 

  • Lonergan PF, Pallotta MA, Lorimer M, Paull JG, Barker SJ, Graham RD (2009) Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). New Phytol 184:168–179

    Article  CAS  Google Scholar 

  • Lorenz AJ, Scott MP, Lamkey KR (2008) Genetic variation and breeding potential of phytate and inorganic phosphorus in a maize population. Crop Sci 48:79–84

    Article  CAS  Google Scholar 

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    Article  Google Scholar 

  • Lung’aho MG, Mwaniki AM, Szalma SJ, Hart JJ, Rutzke MA et al (2011) Genetic and physiological analysis of iron biofortification in maize kernels. PLoS One 6(6), e20429

    Article  CAS  Google Scholar 

  • Lyons G, Ortiz-Monasterio I, Stangoulis J, Graham R (2005) Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding? Plant Soil 269:369–380

    Article  CAS  Google Scholar 

  • Mackay IJ, Bansept-Basler P, Barber T, Bentley AR, Cockram J, Gosman N, Greenland AJ, Horsnell R, Howells R, O’Sullivan D, Rose GA, Howell P (2014) An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: creation, properties and validation. G3: Genes Genomes Genet 4:1603–6010

    Article  CAS  Google Scholar 

  • Mallick SA, Azaz K, Gupta M, Sharma V, Sinha BK (2013) Characterization of grain nutritional quality in wheat. Indian J Plant Physiol 18:183–186

    Article  Google Scholar 

  • Mamo BE, Barber B, Steffenson BJ (2014) Genome–wide association mapping of zinc and iron concentration in barley landraces from Ethiopia and Eritrea. J Cereal Sci 60:497–506

    Google Scholar 

  • Maziya-Dixon B, Kling JG, Menkir A, Dixon A (2000) Genetic variation in total carotene, iron, and zinc contents of maize and cassava genotypes. Food Nutr Bull 21:419–422

    Article  Google Scholar 

  • Meng F, Wei Y, Yang X (2005) Iron content and bioavailability in rice. J Trace Elem Med Biol 18:333–338

    Article  CAS  Google Scholar 

  • Menkir A, Liu W, White WS, Maziya-Dixon B, Rocheford T (2008) Carotenoid diversity in tropical-adapted yellow maize inbred lines. Food Chem 109:521–529

    Article  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  Google Scholar 

  • Monasterio I, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21:392–396

    Article  Google Scholar 

  • Murgia I, Arosio P, Tarantino D, Suoave C (2012) Biofortification for combating ‘hidden hunger’ for iron. Trends Plant Sci 17:47–55

    Article  CAS  Google Scholar 

  • Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA et al (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329:139–153

    Article  CAS  Google Scholar 

  • Norton GJ, Douglas A, Lahner B, Yakubova E, Guerinot ML et al (2014) Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. PLoS One 9, e89685

    Article  CAS  Google Scholar 

  • Oikeh SO, Menkir A, Maziya-Dixon B, Welch R, Glahn RP (2003) Assessment of concentrations of iron and zinc and bioavailable iron in grains of early-maturing tropical maize varieties. J Agric Food Chem 51:3688–3694

    Article  CAS  Google Scholar 

  • Ortiz-Monasterio JI, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Pena RJ (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307

    Article  CAS  Google Scholar 

  • Oury FX, Leenhard F, Remesy C, Chanliaud E, Duperrier B, Balfourier F, Charmet G (2006) Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. Eur J Agron 25:177–185

    Article  CAS  Google Scholar 

  • Owens BF, Lipka AE, Magallanes-Lundback M, Tiede T, Diepenbrock CH, Kandianis CB, Kim E, Cepela J, Mateos-Hernandez M, Buell CR, Buckler ES, DellaPenna D, Gore MA, Rocheford T (2014) A foundation for provitamin a biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198:1699–1716

    Article  CAS  Google Scholar 

  • Ozkan H, Brandolini A, Torun A, Altintas S, Eker S, Kilian B, Braun H, Salamini F, Cakmak I (2007) Natural variation and identification of microelements content in seeds of einkorn wheat (Triticum monococcum). In: Buck HT, Nisi JE, Salomon N (eds) Wheat production in stressed environments. Springer, Berlin, pp 455–462

    Chapter  Google Scholar 

  • Peleg Z, Cakmak I, Ozturk E, Yazici A, Jun Y, Budak H, Korol AB, Fahima T, Saranga Y (2008a) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat 3 wild emmer wheat RIL population. Theor Appl Genet 119:353–369

    Article  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I (2008b) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306:57–67

    Article  CAS  Google Scholar 

  • Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol AB, Fahima T, Saranga Y (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat wild emmer wheat RIL population. Theor Appl Genet 119:353–369

    Article  CAS  Google Scholar 

  • Pinson SRM, Tarpley L, Yan W, Yeater K, Lahner B, Yakubova E, Huang XY, Zhang M, Guerinot ML, Salt DE (2014) Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Sci 55:1–18

    Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    Article  CAS  Google Scholar 

  • Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink J-L (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103

    Article  CAS  Google Scholar 

  • Prasanna BM, Mazumdar S, Chakraborti M, Hossain F, Manjaiah KM, Agarwal PK, Guleria SK, Gupta HS (2011) Genetic variability and genotype × environment interactions for kernel iron and zinc concentrations in maize (Zea mays) genotypes. Indian J Agric Sci 81:704–711

    CAS  Google Scholar 

  • Prom-u-thai C, Rerkasem B (2001) Iron concentration in Thai rice germplasm. Dev Plant Soil Sci 92:351–352

    Google Scholar 

  • Prom-u-thai C, Fukai S, Godwin ID, Huang L (2007) Genotypic variation of iron partitioning in rice grain. J Sci Food Agric 87:2049–2054

    Article  CAS  Google Scholar 

  • Pu Z, Yu M, He Q, Chen G, Wang J, Liu Y, Jiang Q, Li W, Dai S, Wei Y, Zheng Y (2014) Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J Integr Agric 13:2322–2329

    Article  CAS  Google Scholar 

  • Pucher A, Høgh-Jensen H, Gondah J, Hash CT, Haussmann BIG (2014) Micronutrient density and stability in West African pearl millet – potential for biofortification. Crop Sci 54:1709–1720

    Article  CAS  Google Scholar 

  • Qin H, Cai Y, Liu Z, Wang G, Wang J, Guo Y, Wang H (2012) Identification of QTL for zinc and iron concentration in maize kernel and cob. Euphytica 187:345–358

    Google Scholar 

  • Rai KN, Govindraj M, Rao AS (2012) Genetic enhancement of grain iron and zinc content in pearl millet. Qual Assur Saf Crops Foods 4:119–125

    Article  CAS  Google Scholar 

  • Rawat N, Tiwari VK, Singh N, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2008) Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet Resour Crop Evol 56:53–64

    Article  Google Scholar 

  • Rawat N, Tiwari VK, Singh N, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2009) Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet Resour Crop Evol 56:53–64

    Article  Google Scholar 

  • Saenchai C, Prom-u-thai C, Jamjod S, Dell B, Rerkasem B (2013) Genotypic variation in milling depression of iron and zinc concentration in rice grain. Plant Soil 361:271–278

    Article  CAS  Google Scholar 

  • Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733

    Article  CAS  Google Scholar 

  • Salunke R, Neelam K, Rawat N, Tiwari VK, Randhawa GS, Dhaliwal HS, Roy P (2011) Bioavailability of iron from wheat Aegilops derivatives selected for high grain iron and protein contents. J Agric Food Chem 59:7465–7473

    Article  CAS  Google Scholar 

  • Senadhira D, Gregorio G, Graham RD (1998) Breeding iron and zinc dense rice. Paper presented at the international workshop on micronutrient enhancement of rice for developing countries, Rice Research and Extension Center, Stuttgart, pp 1–29, 3 Sept 1998

    Google Scholar 

  • Shi RL, Li HW, Tong YP, Jing RL, Zhang FS, Zou CQ (2008) Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil 306:95–104

    Article  CAS  Google Scholar 

  • Simić D, Drinić SM, Zdunić Z, Jambrović A, Ledenčan T, Brkić J, Brkić A, Brkić I (2012) Quantitative trait loci for biofortification traits in maize grain. J Hered 103:47–54

    Article  CAS  Google Scholar 

  • Singh SP, Vogel-Mikus K, Arcon I, Vavpetic P, Jeromel L, Pelicon P, Kumar J, Tuli R (2013) Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron. J Exp Bot 64:3249–3260

    Article  CAS  Google Scholar 

  • Souza GA, Hart JJ, Carvalho JG, Rutzke MA, Albrecht JC, Guilherme LR, Kochian LV, Li L (2014) Genotypic variation of zinc and selenium concentration in grains of Brazilian wheat lines. Plant Sci 224:27–35

    Article  CAS  Google Scholar 

  • Sperotto RA, Boff T, Duarte GL, Santos LS, Grusak MA, Fett JP (2010) Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains. J Plant Physiol 167:1500–1506

    Article  CAS  Google Scholar 

  • Srinivasa J, Arun B, Mishra VK, Singh GP, Velu G, Babu R, Vasistha NK, Joshi AK (2014) Zinc and iron concentration QTL mapped in a Triticum spelta × T. aestivum cross. Theor Appl Genet 127:1643–1651.

    Google Scholar 

  • Suwarno WB, Pixley KV, Palacios-Rojas N, Kaeppler SM, Babu R (2014) Formation of heterotic groups and understanding genetic effects in a provitamin A biofortified maize breeding program. Crop Sci 54:14–24

    Article  CAS  Google Scholar 

  • Tako E, Hoekenga OA, Kochian LV, Glahn RP (2013) High bioavailability iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus). Nutr J 12:3

    Article  CAS  Google Scholar 

  • Tavajjoh M, Yasrebi J, Karimian N et al (2011) Phytic acid concentration and phytic acid: zinc molar ratio in wheat cultivars and bread flours, Fars province, Iran. J Agric Sci Technol 13:743–755

    CAS  Google Scholar 

  • Tiwari VK, Rawat N, Chhuneja P, Neelam K, Aggarwal R, Randhawa GS, Dhaliwal HS, Keller B, Singh K (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid A genome wheat. J Hered 100:771–776

    Article  CAS  Google Scholar 

  • Tiwari VK, Rawat N, Neelam K, Kumar S, Randhawa GS, Dhaliwal HS (2010) Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theor Appl Genet 121:259–269

    Article  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  Google Scholar 

  • Varshney RK, Kudapa H, Pazhamala L, Chitikineni A et al (2015) Translational genomics in agriculture: some examples in grain legumes. Crit Rev Plant Sci 34:169–194

    Google Scholar 

  • Velu G, Rai KN, Muralidharan V, Kulkarni VN, Longvah T, Raveendran TS (2007) Prospects of breeding biofortified pearl millet with high grain iron and zinc content. Plant Breed. doi:10.1111/j.1439-0523.2007.01322.x

    Google Scholar 

  • Velu G, Ortiz-Monastero I, Singh RP, Payne T (2011a) Variation for grain micronutrients concentration in wheat core-collection accessions of diverse origin. Asian J Crop Sci 3:43–48

    Google Scholar 

  • Velu G, Singh R, Huerta-Espino J, Pena J, Ortiz-Monasterio I (2011b) Breeding for enhanced zinc and iron concentration in CIMMYT spring wheat germplasm. Czech J Genet Plant Breed 47:S174–S177

    CAS  Google Scholar 

  • Velu G, Singh RP, Huerta-Espino J, Pena RJ, Arun B, Mahendru-Singh A, Mujahid MY, Sohu VS, Mavi GS, Crossa J, Alvarado G, Joshi AK, Pfeiffer WH (2012) Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crop Res 137:261–267

    Article  Google Scholar 

  • Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP (2014) Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci 59:365–372

    Article  CAS  Google Scholar 

  • Vignesh M, Hossain F, Nepolean T, Saha S, Agrawal PK, Guleria SK, Prasanna BM, Gupta HS (2012) Genetic variability for kernel β-carotene and utilization of crtRB1 3’TE gene for biofortification in maize (Zea mays L.). Indian J Genet 72:189–194

    CAS  Google Scholar 

  • Welch RM, Graham RD (2002) Breeding crops for enhanced micronutrient content. Plant Soil 245:205–214

    Article  CAS  Google Scholar 

  • Wen W, Li D, Li X, Gao Y, Li W et al (2014) Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun 5:3438

    Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  Google Scholar 

  • Würschum T, Reif JC, Kraft T, Janssen G, Zhao YS (2013) Genomic selection in sugar beet breeding populations. BMC Genet 14:85

    Article  Google Scholar 

  • Xu YF, An DG, Liu DC, Zhang AM, Xu HX, Li B (2012) Molecular mapping of QTLs for grain zinc, iron and protein concentration of wheat across two environments. Field Crop Res 138:57–62

    Article  Google Scholar 

  • Yu JM, Holland JB, McMullen MD et al (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  Google Scholar 

  • Zdunic Z, Grljušić S, Ledenćan T, Duvnjak T, Šimić D (2014) Quantitative trait loci mapping of metal concentrations in leaves of the maize IBM population. Hereditas 151:55–60

    Article  Google Scholar 

  • Zhang B, Chen P, Shi A, Hou A, Ishibashi T, Wang D (2009) Putative quantitative trait loci associated with calcium content in soybean seed. J Hered 100:263–269

    Article  CAS  Google Scholar 

  • Zhang X, Zhang G, Guo L, Wang H, Zeng D et al (2011) Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Euphytica 180:173–179

    Article  CAS  Google Scholar 

  • Zhang M, Pinson SR, Tarpley L, Huang XY, Lahner B, Yakubova E, Baxter I, Guerinot ML, Salt DE (2014) Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain. Theor Appl Genet 127:137–165.

    Google Scholar 

  • Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    Article  CAS  Google Scholar 

  • Zhong S, Dekkers JCM, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364

    Article  CAS  Google Scholar 

  • Zhou JF, Huang YQ, Liu ZZ, Chen JT, Zhu LY, Song ZQ, Zhao YF (2010) Genetic analysis and QTL mapping of zinc, iron, copper and manganese contents in maize seed. J Plant Genet Resour 11:593–595

    CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the support from the Indian Council of Agricultural Research (ICAR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Bohra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Bohra, A., Jha, U.C., Kumar, S. (2016). Enriching Nutrient Density in Staple Crops Using Modern “-Omics” Tools. In: Singh, U., Praharaj, C., Singh, S., Singh, N. (eds) Biofortification of Food Crops. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2716-8_8

Download citation

Publish with us

Policies and ethics