Skip to main content

Microbial Inoculants as Agents of Growth Promotion and Abiotic Stress Tolerance in Plants

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

The use of external chemical inputs such as chemical fertilizers and pesticides undoubtedly resulted in huge increase in agricultural products in the past many decades. Such indiscriminate use of agrochemicals has however resulted in various ecological imbalances and environmental disasters in various parts of the world. The use of plant growth-promoting rhizobacteria (PGPR) as biofertilizers and/or as biocontrol agents to enhance plant growth, increase yield, and suppress diseases in a wide range of agricultural crops is gaining momentum. If PGPR inoculants are to replace agrochemicals in the near future, the search for effective strains must focus on isolation and screening of single or consortium of the bacterial strains that have multiple traits. Moreover, a better result in microbial inoculant development could be achieved by investigating the different modes of actions in disease suppression and plant growth promotion, detection of important genes and traits associated with these, bacterial-host plant interaction, as well as relationships between the bacteria and various environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Alla MH, EL Enany AWE, Nafady NA, Khalof DM, Morsy FM (2014) Symbiotic interaction of Rhizobium leguminosarum bv viciae and Arbuscular mycorrhizal fungi as plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soils. Microbiol Res 169:49–58

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant microbe interactions in enhanced fertilizer use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Ali SZ, Sandhya V, Rao LV (2014) Isolation and characterization of drought tolerant ACC deaminase and exopolysaccharide producing fluorescent Pseudomonas spp. Ann Microbiol 64:493–502

    Article  CAS  Google Scholar 

  • Antoun H, Prevost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, the Netherlands, pp 1–38

    Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase containing rhizobacteria protect Ocimum sanctum plants during water logging stress via reduced ethylene generation. Plant Physiol Biochem 58:227–235

    Article  CAS  PubMed  Google Scholar 

  • Barriuso J, Ramos-Solabo B, Guierrez M (2008) Protection against pathogen and salt stress by four plant growth promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Biol Control 98(6):666–672

    CAS  Google Scholar 

  • Bashan Y, de Bahsan LE (2010) How the plant growth promoting bacterium Azospirillum promotes plant growth: a critical assessment. Adv Agron 108:77–130

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashsan L (2004) Azospirillum-plant relationships; physiological, molecular, agricultural and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Benjamine DD, Bruce AH (2008) Soil science: scavenging for scrap metal. Nat Geosci 1:213–214

    Article  Google Scholar 

  • Blaha D, Prigent-Combaret C, Mirza MS, Moenne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol activity by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Wijfijes AHM, Lamers GEM, Sturman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant Microbe Interact 13:1170–1176

    Article  CAS  PubMed  Google Scholar 

  • Brockwell J, Bottomlley PJ (1995) Recent advances in inoculants technology and prospects for the future. Soil Biol Biochem 27:683–697

    Article  CAS  Google Scholar 

  • Brockwell J, Bottomlley PJ, Theis JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174:143–180

    Article  CAS  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrman JJ (1999) Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Chavez H, Nadolnyak D, Kloepper J (2013) Impacts of microbial inoculants as integrated pest management tools in apple production. J Agric Appl Econ 45:655–667

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganism. Springer, the Netherlands, pp 169–198

    Chapter  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fert Soils 45: 563–571

    Google Scholar 

  • Figueiredo MVB, Seldin L, de Araujo FF, de Mariano R, LRM (2010) Plant growth promoting rhizobacteria. In: Maheshwari DK (ed) Plant growth and health promoting rhizobacteria, vol 18, Microbiology monographs. Springer, Berlin/Heidelberg, pp 21–43

    Chapter  Google Scholar 

  • Franks A, Ryan RP, Abbas A, Mark GL, O’Gara F (2006) Molecular tools for studying plant growth promoting rhizobacteria. In: Cooper JE, Rao JR (eds) Molecular approaches to soil, rhizosphere and plant microorganisms analysis. Biddes Ltd, Kings Lynn, UK, pp 116–131

    Chapter  Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth promoting bacteria: mechanisms and applications. Scientifica 2012: 1–15

    Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378

    Article  CAS  PubMed  Google Scholar 

  • Gontia-Mishra I, Sasidharan S, Tiwari S (2014) Recent developments in use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnol Lett 36:889–898

    Article  CAS  PubMed  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Ventakeshwarlu B (2011) Role of microorganisms in adaptation of agricultural crops to abiotic stress. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Gururani MA, Upadhyaya CP, Upadhyaya CP, Baskar B, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258

    Article  CAS  Google Scholar 

  • Hassen AI, Labuschagne N (2010) Root colonization and growth enhancement in wheat and tomato by rhizobacterial isolates from the rhizoplane of grasses. World J Microbiol Biotechnol 26:1837–1848. doi:10.1007/s11274-010-0365-z

    Article  Google Scholar 

  • Horst WJ, Kamh M, Jibrin JM, Chude VO (2001) Agronomic measures for increasing P availability to crops. Plant Soil 237:211–223

    Article  CAS  Google Scholar 

  • Howieson JG, McInnes A (2001) The legume rhizobia symbiosis. Does it vary for the tropics relative to the Mediterranean basin? In: Proceedings of the XIX international grasslands congress, Brazillian Society of Animal Husbandry, Brazil, pp 585–590

    Google Scholar 

  • Idris HA, Labuschagne N, Korsten L (2007) Screening rhizobacteria for biological control of Fusarium oxysporum root and crown rot of sorghum in Ethiopia. Biol Control 40:97–106

    Article  Google Scholar 

  • Kakar KU, Duan YP, Nawaz Z, Sun G, Almoneafy AA, Hassan MA, Elshakh A, Li B, Xie GL (2014) A novel rhizobacterium BK7 for biological control of brown sheath root rot of rice caused by Pseudomonas fusocovaginae and its mode of action. Eur J Plant Pathol 138:819–834

    Article  Google Scholar 

  • Kang SM, Khan AL, Waqs M, You YH, Kim JH, Kim GK, Hamayun M, Lee IJ (2014) Plant growth promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682

    Article  Google Scholar 

  • Karthikeyan B, Joe MM, Islam Md R, Sa T (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56:77–86

    Article  CAS  Google Scholar 

  • Khandelwal SR, Manwar AV, Chaudhari BL, Chincholkar SB (2002) Siderophorogenic bradyrhizobia boost yield of soybean. Appl Biochem Biotechnol 102–103:155–168

    Article  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: Proceedings of the IVth international conference on plant pathogenic bacteria, Argers, France: Station de Pathologie Vegetale et Phytobacteriologyie, INRA, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintz M, Schroth MN (1980a) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:201–207

    Article  Google Scholar 

  • Kloepper JW, Leong J, Teintz M, Schroth MN (1980b) Pseudomonas sidrophores: a mechanism explaining disease suppressive soils. Curr Microbiol 4:317–320

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Prakash A, Johri BN (2011) Bacillus as PGPR in crop ecosystem. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystem. Springer, Berlin/Heidelberg, pp 37–59

    Chapter  Google Scholar 

  • Leeman M, den Ouden FM, Pelt JAV, Cornelissen C, Matamala-Garros A, Bakker PAHM, Schippers B (1996a) Suppression of Fusarium wilt of radish by co-inoculation of fluorescent Pseudomonas spp. and root colonizing fungi. Eur J Plant Pathol 102:21–31

    Article  Google Scholar 

  • Leeman M, Ouder FMD, Pelt JAV, Dirk FPM, Steij H, Bakker PAHM, Schippers B (1996b) Iron availability affects induction of systemic resistance to Fusarium wilt of radishes by Pseudomonas fluorescens. Phytopathology 86:149–155

    Article  CAS  Google Scholar 

  • Levanony H, Bashan Y (1989) Enhancement of cell division in wheat root tips and growth of root elongation induced by Azospirillum brasilense cd. Can J Bot 67:2213–2216

    Article  Google Scholar 

  • Lindström K, Murwina M, Willers A, Altier N (2010) The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Res Microbiol 161:453–463

    Article  PubMed  Google Scholar 

  • Loper JE, Kobayashi DY, Paulsen IT (2007) The genomic sequence of Pseudomonas fluorescens Pf5: insights into biological control. Phytopathology 97:233–238

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo AJ, Velazquez E, Perez-Galdona R, Vega-Hernandez MC, Martinez-Molina E, Uateos PF, Vinuesa P, Martinez-Romario E, Leon-Barrios M (2000) RFLP analysis of 16S rDNA and low molecular weight RNA profiling of rhizobial isolates from shrubby legumes endemic to Canary islands. Syst Appl Microbiol 23:418–425

    Article  Google Scholar 

  • Lugtenberg BJJ, Deckers LC (1999) What makes Pseudomonas fluorescens rhizosphere competent? Environ Microbiol 1:9–13

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM, Whipps JM (1991) Substrate flow in the rhizosphere. In: Keister DL, Cregan B (eds) The rhizosphere and plant growth, Beltsville symposium in agriculture, vol 14. Kluwer, Dordrecht, pp 15–24

    Chapter  Google Scholar 

  • Martinez-Viveros O, Jorquera MA, Crowley DE, Grajado G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169:609–615

    Article  CAS  PubMed  Google Scholar 

  • McInnes A, Haq K (2007) Contributions of rhizobia to soil nitrogen fertility. In: Abbot LK, Murphy DV (eds) Soil biological fertility- a key to sustained land use in agriculture. Springer, the Netherlands, pp 99–123

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Ashghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC deaminase may mitigate salt stress in wheat. Soil Biol Biochem 74:533–542

    Google Scholar 

  • Nautiyal CS (1997) Rhizosphere competence of Pseudomonas sp. NBR 19926 and Rhizobia sp NBR19513 involved in the suppression of chickpea (Cicer aerietinum) pathogenic fungi. FEMS Microbiol Ecol 23:145–158

    Article  CAS  Google Scholar 

  • Neilands JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 27:637–657

    Google Scholar 

  • Okon Y, Kapulnik Y (1986) Development and function of Azospirillum inoculated roots. Plant Soil 90:3–16

    Article  CAS  Google Scholar 

  • Olubukola O, Babalola O, Glick BR (2012) The use of microbial inoculants in African agriculture. Food Agric Environ 10:540–549

    Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase containing plant growth promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Perez-Montano F, Villegas A, Belligin RA, del Cerro P, Espany MR, Jimenez-Guerrero I, Lopez-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  CAS  PubMed  Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassan FD, Luna MV (2007) Plant growth promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculants formulation. Appl Microbiol Biotechnol 75:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Reddy PP (2013) Plant growth promoting rhizobacteria. In: Recent advances in crop protection., pp 131–158. doi:10.1007/978-81322—0723-8_10

    Chapter  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res LSMR 21:1–29

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhati AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:636–648

    Article  Google Scholar 

  • Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35:887–894

    Article  CAS  Google Scholar 

  • Sharma P, Khanna V, Kumari P (2013) Efficacy of aminocyclopropane-1-carboxylic acid ameliorating water stress in chickpea under axenic conditions. Afr J Microbiol 7(50):5749–5757

    CAS  Google Scholar 

  • Smith GB, Wullum AG II (1989) Nodulation of Glycine max by six Bradyrhizobium japonicum strains with different competitive abilities. Appl Environ Microbiol 55:1957–1962

    PubMed Central  PubMed  Google Scholar 

  • Tang C, Robinson AD, Dilworth MJ (1992) The role of iron in the (Brady) Rhizobium legume symbiosis. J Plant Nutr 15:2235–2252

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var tritici. J Bacteriol 170:3499–3505

    PubMed Central  CAS  PubMed  Google Scholar 

  • Valentine AJ, Benedito VA, Kang Y (2011) Legume nitrogen fixation and soil abiotic stress: from physiology to genomics and beyond. In: Foyer CH, Zhang H (eds) Nitrogen metabolism in plants in the post-genomic era, vol 42, Ann plant rev. Blackwell Publishing, Wiley-Blackwell, Oxford, UK, pp 207–248

    Google Scholar 

  • van Veen JA, van Overbeek LS, van Elisas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135

    PubMed Central  PubMed  Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-Pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 20:441–447

    Article  CAS  PubMed  Google Scholar 

  • Walsh KB (1995) Physiology of the legume nodule and its response to stress. Soil Biol Biochem 27:637–655

    Article  CAS  Google Scholar 

  • Wang D, Yang S, Tang F, Zhu H (2012) Symbiosis specificity in the legume rhizobial mutualism. Cell Microbiol 14:334–342

    Article  PubMed  Google Scholar 

  • Wang X, Mavrodi DV, Ke L, Mavrodi O, Yang M, Thomashow LS, Zheng N, Weller DM, Zhang J (2014) Biocontrol and plant growth promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microb Biotechnol. Open access, pp 1–15

    Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Plant Pathol 26:379–407

    Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 27:250–256

    Article  Google Scholar 

  • Weller DM, Mavrodi DV, van Pelt JA, Pieterse CM, van Loon LC, Bakker PA (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae by 2,4- diacetylphloroglucinol producing Pseudomonas fluorescens. Phytopathology 102:403–412

    Article  CAS  PubMed  Google Scholar 

  • Yehunda Z, Shenker M, Romheld V, Marshner H, Hadar Y, Chen Y (1996) The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants. Plant Physiol 112:1273–1281

    Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Idris Hassen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Hassen, A.I., Bopape, F.L., Sanger, L.K. (2016). Microbial Inoculants as Agents of Growth Promotion and Abiotic Stress Tolerance in Plants. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_2

Download citation

Publish with us

Policies and ethics