Skip to main content

Systemic Infection of Potyvirus: A Compatible Interaction Between Host and Viral Proteins

  • Chapter
  • First Online:

Abstract

Viruses profoundly depend on endogenous host transport system and interact with preexisting host cellular factors during movement. Potyviral movement is directed by several movement proteins that are HC-Pro, CP, VPg, and CI and newly discovered P3N-PIPO. CP and HC-Pro facilitate movement of virus by increasing size exclusion limit (SEL) of plasmodesmata (PD). These movement proteins serve many functions: binding the viral genome, transporting the viral genome to plasmodesmata, gating plasmodesmata, trafficking through plasmodesmata, and then transporting through phloem. TuMV P3N-PIPO is a PD-localized protein and mediates the targeting of CI to PD. The P3 protein was not previously associated with potyvirus movement, but it was known to interact with the P1 protein; it is co-localized with 6K2 vesicles (site of potyviral replication). This points out a link between virus replication complexes and intracellular movement. CP has the ability to increase SEL of PD and interact with host RTM factors and suppress RTM resistance of plants. HC-Pro is crucial for long-distance movement of potyvirus by suppressing gene silencing mechanism of host plant. Interaction with host factors and chaperones is also required for efficient spread of potyvirus; presumably interaction of the viral CP with a plant Dna J-like protein NtCPIP (capsid protein interacting proteins) provides a strong in vivo confirmation for the essential role of plant chaperones in potyvirus movement. In this chapter, we are concerned on potyvirus intracellular, intercellular, and long-distance movement, focusing on the host cellular factors’ interaction with movement proteins involved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Atreya PL, Atreya CD, Pirone TP (1991) Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus. Proc Natl Acad Sci U S A 88:7887–7897

    Article  PubMed  CAS  Google Scholar 

  • Bilgin DD, Liu Y, Schiff M, Dinesh-Kumar SP (2003) P58 (IPK), a plant ortholog of double-stranded RNA-dependent protein kinase PKR inhibitor, functions in viral pathogenesis. Dev Cell 4:651–661

    Article  PubMed  CAS  Google Scholar 

  • Boevenik P, Oparka K (2005) Virus-host interactions during movement process. Plant Physiol 138:1815–1821

    Article  Google Scholar 

  • Buck KW (1996) Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47:159–251

    PubMed  CAS  Google Scholar 

  • Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681

    PubMed  CAS  Google Scholar 

  • Carrington JC, Jensen PE, Schaad MC (1998) Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant J 14:393–400

    Article  PubMed  CAS  Google Scholar 

  • Chisholm ST, Parra MA, Anderberg RJ, Carrington JC (2001) Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. Plant Physiol 127:1667–1675

    Article  PubMed  CAS  Google Scholar 

  • Chung BY, Miller WA, Atkins JF, Firth AE (2008) An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci U S A 105:5897–5902

    Article  PubMed  CAS  Google Scholar 

  • Cosson P, Sofer L, Quang Hien Le, Leger V, Schurdi-Levraud V, Whitham SA, Yamamoto ML, Gopalan S, Le Gall O, Candresse T, Carrington JC, Revers F (2010) RTM3, which controls long-distance movement of potyviruses, is a member of a new plant gene family encoding a Meprin and TRAF homology domain-containing protein. Plant Physiol 154:222–232

    Article  PubMed  CAS  Google Scholar 

  • Cotton S, Dufresne PJ, Thivierge K, Ide C, Fortin MG (2006) The VPgPro protein of Turnip mosaic virus: in vitro inhibition of translation from a ribonuclease activity. Virology 351:92–100

    Article  PubMed  CAS  Google Scholar 

  • Cronin S, Verchot J, Haldeman-Cahill R, Schaad MC, Carrington JC (1995) Long-distance movement factor: a transport function of the potyvirus helper component-proteinase. Plant Cell 7:549–559

    PubMed  CAS  Google Scholar 

  • Cuevas JM, Delaunay A, Visser JC, Bellstedt DU, Jacquot E, Elena SF (2012) Phylogeography and molecular evolution of potato virus Y. PLoS One 7(5):e37853

    Article  PubMed  CAS  Google Scholar 

  • Cui X, Wei T, Chowda-Reddy RV, Sun G, Wang A (2010) The tobacco etch virus P3 protein forms mobile inclusions via the early secretory pathway and traffics along actin microfilaments. Virology 397:56–63

    Article  PubMed  CAS  Google Scholar 

  • Decroocq V, Sicard O, Alamillo JM, Lansac M, Eyquard JP, Garcia JA, Candresse T, Le Gall O, Revers F (2006) Multiple resistance traits control plum pox virus infection in Arabidopsis thaliana. Mol Plant Microbe Interact 19:541–549

    Article  PubMed  CAS  Google Scholar 

  • Decroocq V, Salvador B, Sicard O, Glasa M, Cosson P, Svanella-Dumas L, Revers F, García JA, Candresse T (2009) The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. Mol Plant Microbe Interact 22:1302–1311

    Article  PubMed  CAS  Google Scholar 

  • Dolja VV, Haldeman R, Robertson NL, Dougherty WG, Carrington JC (1994) Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J 13:1482–1491

    PubMed  CAS  Google Scholar 

  • Dolja VV, Haldeman-Cahill R, Montgomery AE, VandenBosch KA, Carrington JC (1995) Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206:1007–1016

    Article  PubMed  CAS  Google Scholar 

  • Dufresne PJ, Thivierge K, Cotton S, Beauchemin C, Ide C, Ubalijoro E, Laliberte JF, Fortin MG (2008) Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles. Virology 374:217–227

    Article  PubMed  CAS  Google Scholar 

  • Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C (2012) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genetics Genomes 9(1):189–204. http://link.springer.com/journal/11295

    Article  Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Johansen E, Eyers S, Thomas CL, Noel Ellis TH, Maule AJ (2004) The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J 40:376–385

    Article  PubMed  CAS  Google Scholar 

  • Govier DA, Kassanis B (1974) A virus-induced component of plant sap needed when aphids acquire potato virus Y from purified preparations. Virology 61:420–426

    Article  PubMed  CAS  Google Scholar 

  • Greber UF, Way M (2006) A superhighway to virus infection. Cell 124:741–754

    Article  PubMed  CAS  Google Scholar 

  • Hofius D, Maier AT, Dietrich C, Jungkunz I, Bo¨rnke F, Maiss E, Sonnewald U (2007) Capsid protein-mediated recruitment of host DnaJ-Like proteins is required for Potato Virus Y infection in tobacco plants. J Virol 81:11870–11880

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Zhang L (1999) Association of the movement protein of alfalfa mosaic virus with the endoplasmic reticulum and its trafficking in epidermal cells of onion bulb scales. Mol Plant Microbe Interact 12:680–690

    Article  CAS  Google Scholar 

  • Huang Z, Han Y, Howell SH (2000) Formation of surface tubules and fluorescent foci in Arabidopsis thaliana protoplasts expressing a fusion between the green fluorescent protein and the Cauliflower mosaic virus movement protein. Virology 271:58–64

    Article  PubMed  CAS  Google Scholar 

  • Huet H, Gal-on A, Meir E, Lecoq H, Raccah B (1994) Mutations in the helper component protease gene of zucchini yellow mosaic virus affect its ability to mediate aphid transmissibility. J Gen Virol 75:1407–1414

    Article  PubMed  CAS  Google Scholar 

  • Ivanov KI, Puustinen P, Merits A, Saarma M, Mäkinen K (2001) Phosphorylation down-regulates the RNA binding function of the coat protein of potato virus A. J Biol Chem 276:13530–13540

    PubMed  CAS  Google Scholar 

  • Ivanov KI, Puustinen P, Gabrenaite R, Vihinen H, Rönnstrand L, Valmu L, Kalkkinen N, Mäkinen K (2003) Phosphorylation of the potyvirus capsid protein by protein kinase CK2 and its relevance for virus infection. Plant Cell 15:2124–2139

    Article  PubMed  CAS  Google Scholar 

  • Kasschau KD, Carrington JC (1995) Requirement for HC-Pro processing during genome amplification of tobacco etch potyvirus. Virology 209:268–273

    Article  PubMed  CAS  Google Scholar 

  • Kasschau KD, Cronin S, Carrington JC (1997) Genome amplification and long-distance movement functions associated with the central domain of tobacco etch potyvirus helper component-proteinase. Virology 228:251–262

    Article  PubMed  CAS  Google Scholar 

  • Kasschau KD, Xie ZX, Llave AE, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217

    Article  PubMed  CAS  Google Scholar 

  • Kelley WL (1998) The J-domain family and the recruitment of chaperone power. Trends Biochem Sci 23:222–227

    Article  PubMed  CAS  Google Scholar 

  • Klein PG, Klein RR, RodrõÂguez-Cerezo E, Hunt AG, Shaw JG (1994) Mutational analysis of the tobacco vein mottling virus genome. Virology 204:759–769

    Article  PubMed  CAS  Google Scholar 

  • Langenberg WG (1986) Virus protein association with cylindrical inclusion of two viruses that infect wheat. J Gen Virol 67:1161–1168

    Article  CAS  Google Scholar 

  • Langford GM (1995) Actin- and microtubule-dependant organelle motors: interrelationships between the two motility systems. Curr Opin Cell Biol 7:82–88

    Article  PubMed  CAS  Google Scholar 

  • Laporte C, Vetter G, Loudes AM, Robinson DG, Hillmer S et al (2003) Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15:2058–2075

    Article  PubMed  CAS  Google Scholar 

  • Lellis AD, Kasschau KD, Whitham SA, Carrington JC (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr Biol 12:1046–1051

    Article  PubMed  CAS  Google Scholar 

  • Leonard S, Plante D, Wittmann S, Daigneault N, Fortin MG, Laliberte JF (2000) Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol 74:7730–7737

    Article  PubMed  CAS  Google Scholar 

  • Léonard S, Viel C, Beauchemin C, Daigneault N, Fortin MG, Laliberté JF (2004) Interaction of VPg-Pro of turnip mosaic virus with the translation initiation factor 4E and the poly (A)-binding protein in planta. J Gen Virol 85:1055–1063

    Article  PubMed  Google Scholar 

  • Li XH, Valdez P, Olvera RE, Carrington JC (1997) Functions of the tobacco etch virus RNA polymerase (NIb): subcellular transport and protein-protein interaction with VPg/proteinase (NIa). J Virol 71:1598–1607

    PubMed  CAS  Google Scholar 

  • Lopez-Moya JJ, Pirone TP (1998) Charge changes near the N terminus of the coat protein of two potyviruses affect virus movement. J Gen Virol 79:161–165

    PubMed  CAS  Google Scholar 

  • Maia IG, Bernardi F (1996) Nucleic acid-binding properties of a bacterially expressed potato virus Y helper component-proteinase. J Gen Virol 77:869–877

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  PubMed  CAS  Google Scholar 

  • Merits A, Guo D, Järvekülg L, Saarma M (1998) Biochemical and genetic evidence for interactions between potato a potyvirus-encoded proteins P1 and P3 and proteins of the putative replication complex. Virology 263:15–22

    Article  Google Scholar 

  • Peña EJ, Heinlein M (2012) RNA transport during TMV cell-to-cell movement. Front Plant Sci 3:193

    Article  PubMed  Google Scholar 

  • Pouwels J, Van Der Krogt GNM, Van Lent J, Bisseling T, Wellink J (2002) The cytoskeleton and the secretory pathway are not involved in targeting the cowpea mosaic virus movement protein to the cell periphery. Virology 297:48–56

    Article  PubMed  CAS  Google Scholar 

  • Radtke AL, O’Riordan MXD (2006) Intracellular innate resistance to bacterial pathogens. Cell Microbiol 8:1720–1729. doi:10.1111/j.1462-5822.2006.00795.x

    Article  PubMed  CAS  Google Scholar 

  • Rajamaki M-L, Valkonen JPT (2002) Viral genome-linked protein (VPg) controls accumulation and phloem-loading of a potyvirus in inoculated potato leaves. Mol Plant-Microbe Interact 15:138–149

    Article  PubMed  CAS  Google Scholar 

  • Roberts IM, Wang D, Findaly K, Maule AJ (1998) Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (CIs) show that the CI protein acts transiently in aiding virus movement. Virology 244:173–181

    Article  Google Scholar 

  • Rojas MR, Zerbini FM, Allison RF, Gilbertson RL, Lucas WJ (1997) Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237:283–295

    Article  PubMed  CAS  Google Scholar 

  • Roudet-Tavert G, Michon T, Walter J, Delaunay T, Redondo E, Le Gall O (2007) Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HcPro. J Gen Virol 88:1029–1033

    Article  PubMed  CAS  Google Scholar 

  • Santa Cruz S (1999) Perspective: phloem transport of viruses and macromolecules-what goes in must come out. Trends Microbiol 7:237–241

    Article  PubMed  CAS  Google Scholar 

  • Schaad MC, Haldeman-Cahill R, Cronin S, Carrington JC (1996) Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification. J Virol 70:7039–7048

    PubMed  CAS  Google Scholar 

  • Schaad MC, Jensen PE, Carrington JC (1997) Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J 16:4049–4059

    Article  PubMed  CAS  Google Scholar 

  • Serva S, Nagy PD (2006) Proteomics analysis of the tombusvirus replicase: Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication. J Virol 80:2162–2169

    Article  PubMed  CAS  Google Scholar 

  • Shahabuddin M, Shaw JG, Rhoads RE (1988) Mapping of the tobacco vein mottling virus VPg cistron. Virology 163:635–637

    Article  PubMed  CAS  Google Scholar 

  • Shukla DD, Ward CW, Brunt AA (1994) The Potyviridae. CAB International, Oxford

    Google Scholar 

  • Silva MS, Wellink J, Goldbach RW, van Lent JWM (2002) Phloem loading and unloading of Cowpea mosaic virus in Vigna unguiculata. J Gen Virol 83:1493–1504

    PubMed  CAS  Google Scholar 

  • Spetz C, Jari PT (2004) Valkonen potyviral 6K2 protein long-distance movement and symptom-induction functions are independent and host-specific. Mol Plant-Microbe Interact 17:502–510

    Article  PubMed  CAS  Google Scholar 

  • Vijayapalani P, Maeshima M, Nagasaki-Takekuchi N, Miller WA (2012) Interaction of the trans-frame potyvirus protein P3N-PIPO with host protein PCaP1 facilitates potyvirus movement. PLoS Pathog 8(4): e1002639. doi:10.1371/journal.ppat.1002639

  • Wei T, Wang A (2008) Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at the endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. J Virol 82:12252–12264

    Article  PubMed  CAS  Google Scholar 

  • Wei T, Zhang C, Hong J, Xiong R, Kasschau KD, Zhou XP, Carrington JC, Wang AM (2010a) Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog 6:e1000962

    Article  PubMed  Google Scholar 

  • Wei TY, Huang TS, McNeil J, Laliberte JF, Jong J, Nelson RS, Wang AM (2010b) Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication. J Virol 84:799–809

    Article  PubMed  CAS  Google Scholar 

  • Wen RH, Hajimorad MR (2010) Mutational analysis of the putative PIPO of soybean mosaic virus suggests disruption of PIPO protein impedes movement. Virology 400:1–7

    Google Scholar 

  • Whitham S, Wang Y (2004) Roles for host factors in plant viral pathogenicity. Curr Opin Plant Biol 7:1–7

    Google Scholar 

  • Whitham SA, Anderberg RJ, Chisholm ST, Carrington JC (2000) Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. Plant Cell 12:569–582

    PubMed  CAS  Google Scholar 

  • Yasuyuki Yamaji, Kensaku Maejima, Ken Komatsu, Takuya Shiraishi, Yukari Okano, Misako Himeno, Kyoko Sugawara, Yutaro Neriya, Nami Minato, Chihiro Miura, Masayoshi Hashimoto, Shigetou Namba (2012) Lectin-mediated resistance impairs plant virus infection at the cellular level. Plant Cell 24:778–793

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Department of Biotechnology, New Delhi, India for providing the financial support (ref no. BT/PR14902/BRB/10/889/2010) during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarshi Kumar Gaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Verma, R.K., Mishra, R., Sharma, P., Choudhary, D.K., Gaur, R.K. (2014). Systemic Infection of Potyvirus: A Compatible Interaction Between Host and Viral Proteins. In: Gaur, R., Sharma, P. (eds) Approaches to Plant Stress and their Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1620-9_20

Download citation

Publish with us

Policies and ethics