Skip to main content

Stromal Barriers Within the Tumor Microenvironment and Obstacles to Nanomedicine

  • Chapter
  • First Online:
Book cover Cancer Drug Delivery Systems Based on the Tumor Microenvironment

Abstract

Nanomedicine has been heralded as the elusive “magic bullet” of cancer chemotherapeutics ever since the description of the Enhanced Permeability and Retention (EPR) effect in 1986. However, decades of research have often shown a great discrepancy between the salient effects seen in preclinical models and the suboptimal effects seen in clinical trials. This indicates that various obstacles exist within human tumors that impede the delivery and penetration of nanomedicine and that the EPR effect itself may be necessary but not sufficient for an efficacious nanomedicine formulation. Furthermore, these obstacles may be absent or much weaker in often used preclinical models, pointing at the importance of developing novel, clinically relevant preclinical models for testing the efficacy of nanomedicine. It is becoming increasingly clear that the various cellular and extracellular matrix components of the tumor stroma that together consist the tumor microenvironment (TME) play an important role in determining the efficiency of nanomedicine penetration into the tumor. We refer to the impediments that these stromal components of the TME pose to nanomedicine as “stromal barriers”. In this chapter, we review the factors affecting nanomedicine delivery with a particular emphasis on the stromal barriers within the TME. We also review the preclinical models available for testing the efficacy of nanomedicine, and how novel models might be developed to further our understanding of the principles governing nanomedicine delivery and penetration into tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

accelerated blood clearance

ADC:

antibody-drug conjugate

CAF:

cancer-associated fibroblast

CAST:

cancer stromal targeting

CDX:

cell-line-derived xenograft

CPP:

cell-penetrating peptide

ECM:

extracellular matrix

EMT:

epithelial-to-mesenchymal transition

EndMT:

endothelial-to-mesenchymal transition

EPR:

enhanced permeability and retention

GEMM:

genetically engineered mouse model

HA:

hyaluronic acid

IFP:

interstitial fluid pressure

LOX:

lysyl oxidase

MSC:

mesenchymal stem cell

PDX:

patient-derived xenograft

PEG:

polyethylene glycol

PFT:

pericyte-to-fibroblast transition

RES:

reticuloendothelial system

TAM:

tumor-associated macrophage

TCGA:

The Cancer Genome Atlas

TEC:

tumor endothelial cell

TEM:

tumor endothelial marker

TGF-β:

transforming growth factor-beta

TME:

tumor microenvironment

VEGF:

vascular endothelial growth factor

References

  1. DeVita VT, Chu E (2008) A history of Cancer chemotherapy. Cancer Res 68:8643–8653

    Article  CAS  PubMed  Google Scholar 

  2. Ma WW, Adjei AA (2009) Novel agents on the horizon for Cancer therapy. CA Cancer J Clin 59:111–137

    Article  PubMed  Google Scholar 

  3. Gotwals P, Cameron S, Cipolletta D et al (2017) Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer 17:286–301

    Article  CAS  PubMed  Google Scholar 

  4. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  5. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY (2013) Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 65:1866–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cabral H, Miyata K, Osada K, Kataoka K (2018) Block copolymer micelles in Nanomedicine applications. Chem Rev 118:6844–6892

    Article  CAS  PubMed  Google Scholar 

  8. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  CAS  PubMed  Google Scholar 

  9. Maeda H (2015) Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 91:3–6

    Article  CAS  PubMed  Google Scholar 

  10. Barenholz Y (Chezy) (2012) Doxil® — the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134

    Article  CAS  Google Scholar 

  11. Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60:876–885

    Article  CAS  PubMed  Google Scholar 

  12. O’Brien MER, Wigler N, Inbar M et al (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol Off J Eur Soc Med Oncol 15:440–449

    Article  Google Scholar 

  13. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with Polyethylated Castor oil–based paclitaxel in women with breast Cancer. J Clin Oncol 23:7794–7803

    Article  CAS  PubMed  Google Scholar 

  14. Hosokawa S, Tagawa T, Niki H, Hirakawa Y, Nohga K, Nagaike K (2003) Efficacy of immunoliposomes on cancer models in a cell-surface-antigen-density-dependent manner. Br J Cancer 89:1545–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsumura Y, Gotoh M, Muro K et al (2004) Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol Off J Eur Soc Med Oncol 15:517–525

    Article  CAS  Google Scholar 

  16. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miao L, Lin CM, Huang L (2015) Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. J Control Release 219:192–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka HY, Kano MR (2018) Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment. Cancer Sci 109:2085–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nie S (2010) Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond) 5:523–528

    Article  Google Scholar 

  20. Ranganathan R, Madanmohan S, Kesavan A, Baskar G, Krishnamoorthy YR, Santosham R, Ponraju D, Rayala SK, Venkatraman G (2012) Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int J Nanomedicine 7:1043–1060

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nichols JW, Bae YH (2012) Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today 7:606–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matsumura Y (2012) Cancer stromal targeting (CAST) therapy. Adv Drug Deliv Rev 64:710–719

    Article  CAS  PubMed  Google Scholar 

  23. Von Hoff DD, Ervin T, Arena FP et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691–1703

    Article  CAS  Google Scholar 

  24. Wang-Gillam A, Li C-P, Bodoky G et al (2016) Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet 387:545–557

    Article  CAS  PubMed  Google Scholar 

  25. Gentile F, Chiappini C, Fine D, Bhavane RC, Peluccio MS, Cheng MM-C, Liu X, Ferrari M, Decuzzi P (2008) The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J Biomech 41:2312–2318

    Article  CAS  PubMed  Google Scholar 

  26. Doshi N, Prabhakarpandian B, Rea-Ramsey A, Pant K, Sundaram S, Mitragotri S (2010) Flow and adhesion of drug carriers in blood vessels depend on their shape: a study using model synthetic microvascular networks. J Control Release 146:196–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Müller K, Fedosov DA, Gompper G (2015) Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci Rep 4:4871

    Article  CAS  Google Scholar 

  28. Lee S-Y, Ferrari M, Decuzzi P (2009) Design of bio-mimetic particles with enhanced vascular interaction. J Biomech 42:1885–1890

    Article  PubMed  Google Scholar 

  29. Thompson AJ, Mastria EM, Eniola-Adefeso O (2013) The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow. Biomaterials 34:5863–5871

    Article  CAS  PubMed  Google Scholar 

  30. Vahidkhah K, Bagchi P (2015) Microparticle shape effects on margination, near-wall dynamics and adhesion in a three-dimensional simulation of red blood cell suspension. Soft Matter 11:2097–2109

    Article  CAS  PubMed  Google Scholar 

  31. Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E (2011) The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22:115101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Roose T, Netti PA, Munn LL, Boucher Y, Jain RK (2003) Solid stress generated by spheroid growth estimated using a linear poroelasticity model☆. Microvasc Res 66:204–212

    Article  PubMed  Google Scholar 

  33. Stylianopoulos T, Martin JD, Chauhan VP et al (2012) Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc Natl Acad Sci 109:15101–15108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Helmlinger G, Netti PA, Lichtenbeld HC, Melder RJ, Jain RK (1997) Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol 15:778–783

    Article  CAS  PubMed  Google Scholar 

  35. Kano MR (2014) Nanotechnology and tumor microcirculation. Adv Drug Deliv Rev 74:2–11

    Article  CAS  PubMed  Google Scholar 

  36. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  37. Cabral H, Matsumoto Y, Mizuno K et al (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823

    Article  CAS  PubMed  Google Scholar 

  38. Matsumoto Y, Nichols JW, Toh K et al (2016) Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat Nanotechnol 11:533–538

    Article  CAS  PubMed  Google Scholar 

  39. Kano MR, Bae Y, Iwata C et al (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc Natl Acad Sci 104:3460–3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kano MR, Komuta Y, Iwata C, Oka M, Shirai Y, Morishita Y, Ouchi Y, Kataoka K, Miyazono K (2009) Comparison of the effects of the kinase inhibitors imatinib, sorafenib, and transforming growth factor-β receptor inhibitor on extravasation of nanoparticles from neovasculature. Cancer Sci 100:173–180

    Article  CAS  PubMed  Google Scholar 

  41. Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22:7369–7375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tukey RH, Strassburg CP (2000) Human UDP-Glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 40:581–616

    Article  CAS  PubMed  Google Scholar 

  43. International Transporter Consortium, Giacomini KM, Huang S-M, et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236

    Article  CAS  Google Scholar 

  44. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP–dependent transporters. Nat Rev Cancer 2:48–58

    Article  CAS  PubMed  Google Scholar 

  45. Schinkel AH, Jonker JW (2003) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 55:3–29

    Article  CAS  PubMed  Google Scholar 

  46. Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591

    Article  PubMed  PubMed Central  Google Scholar 

  47. Caracciolo G, Pozzi D, Candeloro De Sanctis S, Laura Capriotti A, Caruso G, Samperi R, Laganà A (2011) Effect of membrane charge density on the protein corona of cationic liposomes: interplay between cationic charge and surface area. Appl Phys Lett 99:033702

    Article  CAS  Google Scholar 

  48. Bewersdorff T, Vonnemann J, Kanik A, Haag R, Haase A (2017) The influence of surface charge on serum protein interaction and cellular uptake: studies with dendritic polyglycerols and dendritic polyglycerol-coated gold nanoparticles. Int J Nanomedicine Volume 12:2001–2019

    Article  CAS  Google Scholar 

  49. Sakulkhu U, Mahmoudi M, Maurizi L, Salaklang J, Hofmann H (2015) Protein Corona composition of Superparamagnetic Iron oxide nanoparticles with various Physico-chemical properties and coatings. Sci Rep 4:5020

    Article  CAS  Google Scholar 

  50. Chandran P, Riviere JE, Monteiro-Riviere NA (2017) Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells. Nanotoxicology 11:507–519

    Article  CAS  PubMed  Google Scholar 

  51. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105:14265–14270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tenzer S, Docter D, Kuharev J et al (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772–781

    Article  CAS  PubMed  Google Scholar 

  53. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Åberg C, Mahon E, Dawson KA (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8:137–143

    Article  CAS  PubMed  Google Scholar 

  54. Discher DE (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  CAS  PubMed  Google Scholar 

  55. Huang C, Butler PJ, Tong S, Muddana HS, Bao G, Zhang S (2013) Substrate stiffness regulates cellular uptake of nanoparticles. Nano Lett 13:1611–1615

    Article  CAS  PubMed  Google Scholar 

  56. Guo P, Liu D, Subramanyam K, Wang B, Yang J, Huang J, Auguste DT, Moses MA (2018) Nanoparticle elasticity directs tumor uptake. Nat Commun 9:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Duan X, Li Y (2013) Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9:1521–1532

    Article  CAS  PubMed  Google Scholar 

  58. Durymanov MO, Rosenkranz AA, Sobolev AS (2015) Current approaches for improving Intratumoral accumulation and distribution of Nanomedicines. Theranostics 5:1007–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun Q, Ojha T, Kiessling F, Lammers T, Shi Y (2017) Enhancing tumor penetration of Nanomedicines. Biomacromolecules 18:1449–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  PubMed  Google Scholar 

  61. Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of Nanomaterials. Small 7:1322–1337

    Article  CAS  PubMed  Google Scholar 

  62. Gilbert B, Huang F, Zhang H, Waychunas GA, Banfield JF (2004) Nanoparticles: strained and stiff. Science 305:651–654

    Article  CAS  PubMed  Google Scholar 

  63. Hatakeyama H, Akita H, Harashima H (2013) The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull 36:892–899

    Article  CAS  PubMed  Google Scholar 

  64. Bell D, Berchuck A, Birrer M et al (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

    Article  CAS  Google Scholar 

  65. Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of Glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Network CGA (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337

    Article  CAS  Google Scholar 

  67. Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525

    Article  CAS  Google Scholar 

  68. Network CGA (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  CAS  Google Scholar 

  69. Swanton C (2012) Intratumor heterogeneity: evolution through space and time. Cancer Res 72:4875–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Navin N, Kendall J, Troge J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lambrechts D, Wauters E, Boeckx B et al (2018) Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. https://doi.org/10.1038/s41591-018-0096-5

    Article  CAS  PubMed  Google Scholar 

  72. Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Khoo BL, Chaudhuri PK, Ramalingam N, Tan DSW, Lim CT, Warkiani ME (2016) Single-cell profiling approaches to probing tumor heterogeneity. Int J Cancer 139:243–255

    Article  CAS  PubMed  Google Scholar 

  74. Liotta L, Petricoin E (2000) Molecular profiling of human cancer. Nat Rev Genet 1:48–56

    Article  CAS  PubMed  Google Scholar 

  75. Collisson EA, Sadanandam A, Olson P et al (2011) Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 17:500–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Moffitt RA, Marayati R, Flate EL et al (2015) Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet 47:1168–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bazak R, Houri M, El Achy S, Kamel S, Refaat T (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141:769–784

    Article  CAS  PubMed  Google Scholar 

  78. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626

    Article  CAS  PubMed  Google Scholar 

  79. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

  80. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    Article  CAS  PubMed  Google Scholar 

  81. Dancey JE, Bedard PL, Onetto N, Hudson TJ (2012) The genetic basis for Cancer treatment decisions. Cell 148:409–420

    Article  CAS  PubMed  Google Scholar 

  82. Hyman DM, Taylor BS, Baselga J (2017) Implementing genome-driven oncology. Cell 168:584–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372:793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure — an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    Article  CAS  PubMed  Google Scholar 

  85. Stylianopoulos T (2017) The solid mechanics of Cancer and strategies for improved therapy. J Biomech Eng 139:021004

    Article  Google Scholar 

  86. Lampi MC, Reinhart-King CA (2018) Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci Transl Med 10:eaao0475

    Article  PubMed  CAS  Google Scholar 

  87. Jain RK (1988) Determinants of tumor blood flow: a review. Cancer Res 48:2641–2658

    CAS  PubMed  Google Scholar 

  88. Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2:83–90

    Article  PubMed  Google Scholar 

  89. Nia HT, Liu H, Seano G et al (2016) Solid stress and elastic energy as measures of tumour mechanopathology. Nat Biomed Eng 1:0004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Stylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK (2013) Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res 73:3833–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Voutouri C, Polydorou C, Papageorgis P, Gkretsi V, Stylianopoulos T (2016) Hyaluronan-derived swelling of solid tumors, the contribution of collagen and Cancer cells, and implications for Cancer therapy. Neoplasia 18:732–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. McGrail DJ, McAndrews KM, Brandenburg CP, Ravikumar N, Kieu QMN, Dawson MR (2015) Osmotic regulation is required for Cancer cell survival under solid stress. Biophys J 109:1334–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tredan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. JNCI J Natl Cancer Inst 99:1441–1454

    Article  CAS  PubMed  Google Scholar 

  94. Ingber DE (1997) Tensegrity: the architectural basis of cellular Mechanotransduction. Annu Rev Physiol 59:575–599

    Article  CAS  PubMed  Google Scholar 

  95. DuFort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12:308–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Calvo F, Ege N, Grande-Garcia A et al (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15:637–646

    Article  CAS  PubMed  Google Scholar 

  97. Goetz JG, Minguet S, Navarro-Lérida I et al (2011) Biomechanical remodeling of the microenvironment by stromal Caveolin-1 favors tumor invasion and metastasis. Cell 146:148–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zanconato F, Cordenonsi M, Piccolo S (2016) YAP/TAZ at the roots of Cancer. Cancer Cell 29:783–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Das T, Safferling K, Rausch S, Grabe N, Boehm H, Spatz JP (2015) A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat Cell Biol 17:276–287

    Article  CAS  PubMed  Google Scholar 

  100. Wei SC, Fattet L, Tsai JH et al (2015) Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1–G3BP2 mechanotransduction pathway. Nat Cell Biol 17:678–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Parekh A, Weaver AM (2009) Regulation of cancer invasiveness by the physical extracellular matrix environment. Cell Adhes Migr 3:288–292

    Article  Google Scholar 

  102. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196:395–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shieh AC (2011) Biomechanical forces shape the tumor microenvironment. Ann Biomed Eng 39:1379–1389

    Article  PubMed  Google Scholar 

  104. Paszek MJ, Zahir N, Johnson KR et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  CAS  PubMed  Google Scholar 

  105. Mohammadi H, Sahai E (2018) Mechanisms and impact of altered tumour mechanics. Nat Cell Biol 20:766–774

    Article  CAS  PubMed  Google Scholar 

  106. Laklai H, Miroshnikova YA, Pickup MW et al (2016) Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med 22:497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR (2012) Enzymatic targeting of the Stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dolor A, Szoka FC (2018) Digesting a path forward: the utility of collagenase tumor treatment for improved drug delivery. Mol Pharm 15:2069–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Malandrino A, Mak M, Kamm RD, Moeendarbary E (2018) Complex mechanics of the heterogeneous extracellular matrix in cancer. Extrem Mech Lett 21:25–34

    Article  Google Scholar 

  111. Streitberger K-J, Reiss-Zimmermann M, Freimann FB, Bayerl S, Guo J, Arlt F, Wuerfel J, Braun J, Hoffmann K-T, Sack I (2014) High-resolution mechanical imaging of Glioblastoma by multifrequency magnetic resonance Elastography. PLoS One 9:e110588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Liu T, Babaniyi OA, Hall TJ, Barbone PE, Oberai AA (2015) Noninvasive in-vivo quantification of mechanical heterogeneity of invasive breast carcinomas. PLoS One 10:e0130258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Zhang L, Nishihara H, Kano MR (2012) Pericyte-coverage of human tumor vasculature and nanoparticle permeability. Biol Pharm Bull 35:761–766

    Article  CAS  PubMed  Google Scholar 

  114. Kamei R, Tanaka HY, Kawano T, Morii C, Tanaka S, Nishihara H, Iwata C, Kano MR (2017) Regulation of endothelial Fas expression as a mechanism of promotion of vascular integrity by mural cells in tumors. Cancer Sci 108:1080–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  CAS  PubMed  Google Scholar 

  116. Smith NR, Baker D, Farren M et al (2013) Tumor stromal architecture can define the intrinsic tumor response to VEGF-targeted therapy. Clin Cancer Res 19:6943–6956

    Article  CAS  PubMed  Google Scholar 

  117. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125:5591–5596

    Article  CAS  PubMed  Google Scholar 

  118. Aird WC (2012) Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2:a006429–a006429

    Article  PubMed  PubMed Central  Google Scholar 

  119. Dejana E, Hirschi KK, Simons M (2017) The molecular basis of endothelial cell plasticity. Nat Commun 8:14361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nolan DJ, Ginsberg M, Israely E et al (2013) Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 26:204–219

    Article  CAS  PubMed  Google Scholar 

  121. Hida K, Ohga N, Akiyama K, Maishi N, Hida Y (2013) Heterogeneity of tumor endothelial cells. Cancer Sci 104:1391–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dudley AC (2012) Tumor endothelial cells. Cold Spring Harb Perspect Med 2:a006536–a006536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Seaman S, Stevens J, Yang MY, Logsdon D, Graff-Cherry C, St. Croix B (2007) Genes that distinguish physiological and pathological angiogenesis. Cancer Cell 11:539–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. St Croix B, Rago C, Velculescu V et al (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  Google Scholar 

  125. Yoshikawa M, Mukai Y, Okada Y et al (2013) Robo4 is an effective tumor endothelial marker for antibody-drug conjugates based on the rapid isolation of the anti-Robo4 cell-internalizing antibody. Blood 121:2804–2813

    Article  CAS  PubMed  Google Scholar 

  126. Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R (2007) Discovery of endothelial to Mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67:10123–10128

    Article  CAS  PubMed  Google Scholar 

  127. Hosaka K, Yang Y, Seki T et al (2016) Pericyte–fibroblast transition promotes tumor growth and metastasis. Proc Natl Acad Sci 113:E5618–E5627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. LeBleu VS, Kalluri R (2018) A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech 11:dmm029447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Quante M, Tu SP, Tomita H et al (2011) Bone marrow-derived Myofibroblasts contribute to the Mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19:257–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nieto MA, Huang RY-J, Jackson RA, Thiery JP (2016) EMT: 2016. Cell 166:21–45

    Article  CAS  PubMed  Google Scholar 

  133. Tarin D (2013) Role of the host stroma in cancer and its therapeutic significance. Cancer Metastasis Rev 32:553–566

    Article  CAS  PubMed  Google Scholar 

  134. Tarin D, Thompson EW, Newgreen DF (2005) The fallacy of epithelial Mesenchymal transition in Neoplasia. Cancer Res 65:5996–6001

    Article  CAS  PubMed  Google Scholar 

  135. Amatangelo MD, Bassi DE, Klein-Szanto AJP, Cukierman E (2005) Stroma-derived three-dimensional matrices are necessary and sufficient to promote Desmoplastic differentiation of Normal fibroblasts. Am J Pathol 167:475–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee H-O, Mullins SR, Franco-Barraza J, Valianou M, Cukierman E, Cheng JD (2011) FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer 11:245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tanaka HY, Kitahara K, Sasaki N et al (2019) Pancreatic stellate cells derived from human pancreatic cancer demonstrate aberrant SPARC-dependent ECM remodeling in 3D engineered fibrotic tissue of clinically relevant thickness. Biomaterials 192:355–367

    Article  CAS  PubMed  Google Scholar 

  138. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363

    Article  CAS  PubMed  Google Scholar 

  139. Karsdal MA, Nielsen SH, Leeming DJ et al (2017) The good and the bad collagens of fibrosis – their role in signaling and organ function. Adv Drug Deliv Rev 121:43–56

    Article  CAS  PubMed  Google Scholar 

  140. Zhang H, Chang H, Wang L, Ren K, Martins MCL, Barbosa MA, Ji J (2015) Effect of polyelectrolyte film stiffness on endothelial cells during endothelial-to-Mesenchymal transition. Biomacromolecules 16:3584–3593

    Article  CAS  PubMed  Google Scholar 

  141. Pitt JM, Marabelle A, Eggermont A, Soria J-C, Kroemer G, Zitvogel L (2016) Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol 27:1482–1492

    Article  CAS  PubMed  Google Scholar 

  142. Wellenstein MD, de Visser KE (2018) Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 48:399–416

    Article  CAS  PubMed  Google Scholar 

  143. Jiménez-Sánchez A, Memon D, Pourpe S et al (2017) Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian Cancer patient. Cell 170:927–938. e20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Lee SS-Y, Bindokas VP, Kron SJ (2017) Multiplex three-dimensional optical mapping of tumor immune microenvironment. Sci Rep 7:17031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882

    Article  CAS  PubMed  Google Scholar 

  146. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  147. Ho EA, Piquette-Miller M (2006) Regulation of multidrug resistance by pro-inflammatory cytokines. Curr Cancer Drug Targets 6:295–311

    Article  CAS  PubMed  Google Scholar 

  148. Hanahan D, Weinberg RA (2000) The hallmarks of Cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  149. Day C-P, Merlino G, Van Dyke T (2015) Preclinical mouse Cancer models: a maze of opportunities and challenges. Cell 163:39–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hwang C-I, Boj SF, Clevers H, Tuveson DA (2016) Preclinical models of pancreatic ductal adenocarcinoma. J Pathol 238:197–204

    Article  PubMed  Google Scholar 

  151. Sakai S, Iwata C, Tanaka HY, Cabral H, Morishita Y, Miyazono K, Kano MR (2016) Increased fibrosis and impaired intratumoral accumulation of macromolecules in a murine model of pancreatic cancer co-administered with FGF-2. J Control Release 230:109–115

    Article  CAS  PubMed  Google Scholar 

  152. Domcke S, Sinha R, Levine DA, Sander C, Schultz N (2013) Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun 4:2126

    Article  PubMed  CAS  Google Scholar 

  153. Daniel VC, Marchionni L, Hierman JS et al (2009) A primary Xenograft model of small-cell lung Cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res 69:3364–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Piaskowski S, Bienkowski M, Stoczynska-Fidelus E et al (2011) Glioma cells showing IDH1 mutation cannot be propagated in standard cell culture conditions. Br J Cancer 104:968–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Voskoglou-Nomikos T, Pater JL, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9:4227–4239

    PubMed  Google Scholar 

  156. Johnson JI, Decker S, Zaharevitz D et al (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84:1424–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sharpless NE, DePinho RA (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5:741–754

    Article  CAS  PubMed  Google Scholar 

  158. Becher OJ, Holland EC (2006) Genetically engineered models have advantages over Xenografts for preclinical studies. Cancer Res 66:3355–3359

    Article  CAS  PubMed  Google Scholar 

  159. Izeradjene K, Combs C, Best M et al (2007) KrasG12D and Smad4/Dpc4 Haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 11:229–243

    Article  CAS  PubMed  Google Scholar 

  160. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483

    Article  CAS  PubMed  Google Scholar 

  161. Hingorani SR, Petricoin EF, Maitra A et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450

    Article  CAS  PubMed  Google Scholar 

  162. Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S, Wright CVE, Moses HL (2006) Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-β signaling in cooperation with active Kras expression. Genes Dev 20:3147–3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    Article  CAS  PubMed  Google Scholar 

  165. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  166. Walrath JC, Hawes JJ, Van Dyke T, Reilly KM (2010) Genetically engineered mouse models in cancer research. Adv Cancer Res 106:113–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Houghton JA, Taylor DM (1978) Growth characteristics of human colorectal tumours during serial passage in immune-deprived mice. Br J Cancer 37:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9:338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hidalgo M, Amant F, Biankin AV et al (2014) Patient-derived Xenograft models: an emerging platform for translational Cancer research. Cancer Discov 4:998–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Morelli MP, Calvo E, Ordoñez E, Wick MJ, Viqueira B-R, Lopez-Casas PP, Bruckheimer E, Calles-Blanco A, Sidransky D, Hidalgo M (2012) Prioritizing phase I treatment options through preclinical testing on personalized Tumorgraft. J Clin Oncol 30:e45–e48

    Article  CAS  PubMed  Google Scholar 

  171. Hidalgo M, Bruckheimer E, Rajeshkumar NV, Garrido-Laguna I, De Oliveira E, Rubio-Viqueira B, Strawn S, Wick MJ, Martell J, Sidransky D (2011) A pilot clinical study of treatment guided by personalized Tumorgrafts in patients with advanced Cancer. Mol Cancer Ther 10:1311–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gao H, Korn JM, Ferretti S et al (2015) High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med 21:1318–1325

    Article  CAS  PubMed  Google Scholar 

  173. Nardella C, Lunardi A, Patnaik A, Cantley LC, Pandolfi PP (2011) The APL paradigm and the “co-clinical trial” project. Cancer Discov 1:108–116

    Article  PubMed  Google Scholar 

  174. Chen Z, Cheng K, Walton Z et al (2012) A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 483:613–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Pergolini I, Morales-Oyarvide V, Mino-Kenudson M et al (2017) Tumor engraftment in patient-derived xenografts of pancreatic ductal adenocarcinoma is associated with adverse clinicopathological features and poor survival. PLoS One 12:e0182855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. John T, Kohler D, Pintilie M et al (2011) The ability to form primary tumor Xenografts is predictive of increased risk of disease recurrence in early-stage non-small cell lung Cancer. Clin Cancer Res 17:134–141

    Article  CAS  PubMed  Google Scholar 

  177. Lai Y, Wei X, Lin S, Qin L, Cheng L, Li P (2017) Current status and perspectives of patient-derived xenograft models in cancer research. J Hematol Oncol 10:106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Yu J, Seldin MM, Fu K et al (2018) Topological arrangement of cardiac fibroblasts regulates cellular plasticity. Circ Res 123:73–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Levinger I, Ventura Y, Vago R (2014) Life is three dimensional—as in vitro Cancer cultures should be. pp 383–414

    Google Scholar 

  180. Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12:207–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6:16–26

    Article  CAS  PubMed  Google Scholar 

  182. Shyy JY-J, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91:769–775

    Article  CAS  PubMed  Google Scholar 

  183. White CR, Frangos JA (2007) The shear stress of it all: the cell membrane and mechanochemical transduction. Philos Trans R Soc B Biol Sci 362:1459–1467

    Article  CAS  Google Scholar 

  184. Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and Cancer in 3D. Cell 130:601–610

    Article  CAS  PubMed  Google Scholar 

  185. Bin KJ (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15:365–377

    Article  CAS  Google Scholar 

  186. Wu M, Swartz MA (2014) Modeling tumor microenvironments in vitro. J Biomech Eng 136:021011

    Article  PubMed  Google Scholar 

  187. Fong ELS, Harrington DA, Farach-Carson MC, Yu H (2016) Heralding a new paradigm in 3D tumor modeling. Biomaterials 108:197–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC (2016) In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2016.00012

  189. Park KM, Lewis D, Gerecht S (2017) Bioinspired hydrogels to engineer Cancer microenvironments. Annu Rev Biomed Eng 19:109–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S (2012) Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 164:192–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Weeber F, Ooft SN, Dijkstra KK, Voest EE (2017) Tumor Organoids as a pre-clinical Cancer model for drug discovery. Cell Chem Biol 24:1092–1100

    Article  CAS  PubMed  Google Scholar 

  192. Sachs N, Clevers H (2014) Organoid cultures for the analysis of cancer phenotypes. Curr Opin Genet Dev 24:68–73

    Article  CAS  PubMed  Google Scholar 

  193. Aboulkheyr Es H, Montazeri L, Aref AR, Vosough M, Baharvand H (2018) Personalized Cancer medicine: an Organoid approach. Trends Biotechnol 36:358–371

    Article  CAS  PubMed  Google Scholar 

  194. Matsusaki M, Case CP, Akashi M (2014) Three-dimensional cell culture technique and pathophysiology. Adv Drug Deliv Rev 74:95–103

    Article  CAS  PubMed  Google Scholar 

  195. Nishiguchi A, Yoshida H, Matsusaki M, Akashi M (2011) Rapid construction of three-dimensional multilayered tissues with endothelial tube networks by the cell-accumulation technique. Adv Mater 23:3506–3510

    Article  CAS  PubMed  Google Scholar 

  196. van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126

    Article  PubMed  CAS  Google Scholar 

  197. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ahn J, Sei Y, Jeon N, Kim Y (2017) Tumor microenvironment on a Chip: the Progress and future perspective. Bioengineering 4:64

    Article  PubMed Central  CAS  Google Scholar 

  199. Tsai H-F, Trubelja A, Shen AQ, Bao G (2017) Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment. J R Soc Interface 14:20170137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Zhang YS, Zhang Y-N, Zhang W (2017) Cancer-on-a-chip systems at the frontier of nanomedicine. Drug Discov Today 22:1392–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. McWhorter FY, Davis CT, Liu WF (2015) Physical and mechanical regulation of macrophage phenotype and function. Cell Mol Life Sci 72:1303–1316

    Article  CAS  PubMed  Google Scholar 

  202. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hosoya H, Kadowaki K, Matsusaki M et al (2012) Engineering fibrotic tissue in pancreatic cancer: a novel three-dimensional model to investigate nanoparticle delivery. Biochem Biophys Res Commun 419:32–37

    Article  CAS  PubMed  Google Scholar 

  205. Matsusaki M, Komeda M, Mura S, Tanaka HY, Kano MR, Couvreur P, Akashi M (2017) Desmoplastic reaction in 3D-pancreatic Cancer tissues suppresses molecular permeability. Adv Healthc Mater 6:1700057

    Article  CAS  Google Scholar 

  206. Priwitaningrum DL, Blondé J-BG, Sridhar A, van Baarlen J, Hennink WE, Storm G, Le Gac S, Prakash J (2016) Tumor stroma-containing 3D spheroid arrays: a tool to study nanoparticle penetration. J Control Release 244:257–268

    Article  CAS  PubMed  Google Scholar 

  207. Gong X, Lin C, Cheng J, Su J, Zhao H, Liu T, Wen X, Zhao P (2015) Generation of multicellular tumor spheroids with microwell-based Agarose scaffolds for drug testing. PLoS One 10:e0130348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Khawar IA, Park JK, Jung ES, Lee MA, Chang S, Kuh H-J (2018) Three dimensional mixed-cell spheroids mimic Stroma-mediated Chemoresistance and invasive migration in hepatocellular carcinoma. Neoplasia 20:800–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Nishiguchi A, Matsusaki M, Kano MR, Nishihara H, Okano D, Asano Y, Shimoda H, Kishimoto S, Iwai S, Akashi M (2018) In vitro 3D blood/lymph-vascularized human stromal tissues for preclinical assays of cancer metastasis. Biomaterials 179:144–155

    Article  CAS  PubMed  Google Scholar 

  210. Liu C-Y, Matsusaki M, Akashi M (2016) Three-dimensional tissue models constructed by cells with nanometer- or micrometer-sized films on the surfaces. Chem Rec 16:783–796

    Article  CAS  PubMed  Google Scholar 

  211. Hsu Y-C, Acuña M, Tahara SM, Peng C-A (2003) Reduced phagocytosis of colloidal carriers using soluble CD47. Pharm Res 20:1539–1542

    Article  CAS  PubMed  Google Scholar 

  212. Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE (2013) Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339:971–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47

    Article  CAS  Google Scholar 

  214. del Pino P, Pelaz B, Zhang Q, Maffre P, Nienhaus GU, Parak WJ (2014) Protein corona formation around nanoparticles – from the past to the future. Mater Horiz 1:301–313

    Article  Google Scholar 

  215. Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lübbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648

    CAS  PubMed  Google Scholar 

  216. Takae S, Akiyama Y, Otsuka H, Nakamura T, Nagasaki Y, Kataoka K (2005) Ligand density effect on biorecognition by PEGylated gold nanoparticles: regulated interaction of RCA 120 Lectin with lactose installed to the distal end of tethered PEG strands on gold surface. Biomacromolecules 6:818–824

    Article  CAS  PubMed  Google Scholar 

  217. Elias DR, Poloukhtine A, Popik V, Tsourkas A (2013) Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomed Nanotechnol Biol Med 9:194–201

    Article  CAS  Google Scholar 

  218. Kumagai M, Kano MR, Morishita Y, Ota M, Imai Y, Nishiyama N, Sekino M, Ueno S, Miyazono K, Kataoka K (2009) Enhanced magnetic resonance imaging of experimental pancreatic tumor in vivo by block copolymer-coated magnetite nanoparticles with TGF-β inhibitor. J Control Release 140:306–311

    Article  CAS  PubMed  Google Scholar 

  219. Stirland DL, Matsumoto Y, Toh K, Kataoka K, Bae YH (2016) Analyzing spatiotemporal distribution of uniquely fluorescent nanoparticles in xenograft tumors. J Control Release 227:38–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Wang T-H, Hsia S-M, Shieh T-M (2016) Lysyl oxidase and the tumor microenvironment. Int J Mol Sci 18:62

    Article  PubMed Central  CAS  Google Scholar 

  221. Olive KP, Jacobetz MA, Davidson CJ et al (2009) Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–1461

    Google Scholar 

  222. Lee JJ, Perera RM, Wang H et al (2014) Stromal response to hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci 111:E3091–E3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Rhim AD, Oberstein PE, Thomas DH et al (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25:735–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Özdemir BC, Pentcheva-Hoang T, Carstens JL et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25:719–734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Öhlund D, Handly-Santana A, Biffi G et al (2017) Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214:579–596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Gascard P, Tlsty TD (2016) Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev 30:1002–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Chronopoulos A, Robinson B, Sarper M et al (2016) ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat Commun 7:12630

    Article  PubMed  PubMed Central  Google Scholar 

  228. Sherman MH, Yu RT, Engle DD et al (2014) Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159:80–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Cox TR, Bird D, Baker A-M, Barker HE, Ho MW-Y, Lang G, Erler JT (2013) LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res 73:1721–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Thompson CB, Shepard HM, O’Connor PM et al (2010) Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models. Mol Cancer Ther 9:3052–3064

    Article  CAS  PubMed  Google Scholar 

  231. Bala V, Rao S, Boyd BJ, Prestidge CA (2013) Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J Control Release 172:48–61

    Article  CAS  PubMed  Google Scholar 

  232. Gébleux R, Stringhini M, Casanova R, Soltermann A, Neri D (2017) Non-internalizing antibody-drug conjugates display potent anti-cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix. Int J Cancer 140:1670–1679

    Article  PubMed  CAS  Google Scholar 

  233. Rajendran L, Knölker H-J, Simons K (2010) Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov 9:29–42

    Article  CAS  PubMed  Google Scholar 

  234. Varkouhi AK, Scholte M, Storm G, Haisma HJ (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151:220–228

    Article  CAS  PubMed  Google Scholar 

  235. Ma D (2014) Enhancing endosomal escape for nanoparticle mediated siRNA delivery. Nanoscale 6:6415

    Article  CAS  PubMed  Google Scholar 

  236. Dominska M, Dykxhoorn DM (2010) Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci 123:1183–1189

    Article  CAS  PubMed  Google Scholar 

  237. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  CAS  PubMed  Google Scholar 

  238. Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126:187–204

    Article  CAS  PubMed  Google Scholar 

  239. Dams ET, Laverman P, Oyen WJ, Storm G, Scherphof GL, van Der Meer JW, Corstens FH, Boerman OC (2000) Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 292:1071–1079

    CAS  PubMed  Google Scholar 

  240. Ishida T, Ichihara M, Wang X, Kiwada H (2006) Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes. J Control Release 115:243–250

    Article  CAS  PubMed  Google Scholar 

  241. Ishida T, Maeda R, Ichihara M, Irimura K, Kiwada H (2003) Accelerated clearance of PEGylated liposomes in rats after repeated injections. J Control Release 88:35–42

    Article  CAS  PubMed  Google Scholar 

  242. Zhang P, Sun F, Liu S, Jiang S (2016) Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J Control Release 244:184–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Engler AC, Ke X, Gao S, Chan JMW, Coady DJ, Ono RJ, Lubbers R, Nelson A, Yang YY, Hedrick JL (2015) Hydrophilic polycarbonates: promising degradable alternatives to poly(ethylene glycol)-based stealth materials. Macromolecules 48:1673–1678

    Article  CAS  Google Scholar 

  244. Barz M, Luxenhofer R, Zentel R, Vicent MJ (2011) Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure–property relationships to better defined therapeutics. Polym Chem 2:1900

    Article  CAS  Google Scholar 

  245. Ilinskaya AN, Dobrovolskaia MA (2016) Understanding the immunogenicity and antigenicity of nanomaterials: past, present and future. Toxicol Appl Pharmacol 299:70–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Bhabra G, Sood A, Fisher B et al (2009) Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol 4:876–883

    Article  CAS  PubMed  Google Scholar 

  247. Sood A, Salih S, Roh D et al (2011) Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nat Nanotechnol 6:824–833

    Article  CAS  PubMed  Google Scholar 

  248. Hawkins SJ, Crompton LA, Sood A et al (2018) Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes. Nat Nanotechnol 13:427–433

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsunobu R. Kano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanaka, H.Y., Kano, M.R. (2019). Stromal Barriers Within the Tumor Microenvironment and Obstacles to Nanomedicine. In: Matsumura, Y., Tarin, D. (eds) Cancer Drug Delivery Systems Based on the Tumor Microenvironment. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56880-3_4

Download citation

Publish with us

Policies and ethics