Skip to main content

Comparing Endocranial Surfaces: Mesh Superimposition and Coherent Point Drift Registration

  • Chapter
  • First Online:
Digital Endocasts

Abstract

The endocranial cavity is a major source of information for the assessment of brain morphology in extinct species. Digital molds of the endocranium can be reconstructed from fossil remains. In paleoneurology, these so-called endocasts are examined using shape analysis and multivariate statistical methods to quantify differences among species and individuals. These surfaces are relatively smooth and offer few landmarks; as such, morphometric comparisons are not straightforward, and correspondence search algorithms are necessary to identify loci of equivalent anatomical variation. Many solutions to this so-called correspondence problem have been proposed, but these often require considerable manual input. Here, we present the application in paleoneurology of a correspondence search and symmetrization algorithm originally designed for facial and palatal scans. Homologous representations of surfaces were used to render a computed visualization of differences in shape between modern humans, Neanderthals, archaic humans, and chimpanzees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Balzeau A, Grimaud-Hervé D, Détroit F, Holloway RL, Combès B, Prima S (2012) First description of the Cro-Magnon 1 endocast and study of brain variation and evolution in anatomically modern Homo sapiens. Bull Mém Soc Anthropol 25:1–18

    Article  Google Scholar 

  • Barrick TR, Mackay CE, Prima S, Maes F, Vandermeulen D, Crow TJ, Roberts N (2005) Automatic analysis of cerebral asymmetry: an exploratory study of the relationship between brain torque and planum temporale asymmetry. NeuroImage 24:678–691

    Article  Google Scholar 

  • Barton RA, Venditti C (2013) Human frontal lobes are not relatively large. PNAS 110:9001–9006

    Article  Google Scholar 

  • Bastir M, Rosas A, Gunz P, Peña-Melian A, Manzi G, Harvati K, Kruszynski R, Stringer C, Hublin JJ (2011) Evolution of the base of the brain in highly encephalized human species. Nat Commun 2:588

    Article  Google Scholar 

  • Beaudet A, Bruner E (2017) A frontal lobe surface analysis in three archaic African human fossils: OH 9, Buia, and Bodo. C R Palevol 16:499–507

    Article  Google Scholar 

  • Beaudet A, Dumoncel J, de Beer F, Duployer B, Durrleman S, Gilissen E, Hoffman J, Tenailleau C, Thackeray JF, Braga J (2016) Morphoarchitectural variation in South African fossil cercopithecoid endocasts. J Hum Evol 101:65–78

    Article  Google Scholar 

  • Bookstein FL (1989) Principal warps: thin-plate splines and the decomposition of deformations. Pattern Anal Mach Intell IEEE Trans 11:567–585

    Article  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, New York

    Google Scholar 

  • Bookstein FL (1997) Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med Image Anal 1:225–243

    Article  Google Scholar 

  • Bookstein FL, Gunz P, Mitterœcker P, Prossinger H, Schæfer K, Seider H (2003) Cranial integration in homo: singular warps analysis of the midsagittal plane in ontogeny and evolution. J Hum Evol 44:167–187

    Article  Google Scholar 

  • Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus homo. J Hum Evol 47:279–303

    Article  Google Scholar 

  • Bruner E, Holloway RL (2010) A bivariate approach to the widening of the frontal lobes in the genus homo. J Hum Evol 58:138–146

    Article  Google Scholar 

  • Bruner E, Manzi G, Arsuaga JL (2003) Encephalization and allometric trajectories in the genus homo: evidence from the Neandertal and modern lineages. PNAS 100:15335–15340

    Article  Google Scholar 

  • Bruner E, Saracino B, Ricci F, Tafuri M, Passarello P, Manzi G (2004) Midsagittal cranial shape variation in the genus homo by geometric morphometrics. Coll Antropol 28:99–112

    Google Scholar 

  • Bruner E, De La Cuétara JM, Holloway R (2011) A bivariate approach to the variation of the parietal curvature in the genus homo. Anat Rec 294:1548–1556

    Article  Google Scholar 

  • Bruner E, Rangel de Lázaro G, de la Cuétara JM, Martín-Loeches M, Colom R, Jacobs HIL (2014) Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals. J Anat 224:367–376

    Article  Google Scholar 

  • Dupej J, Krajíček V, Velemínská J, Pelikán J (2013) Analysis of asymmetry in triangular meshes. Proceedings of the 33rd conference on geometry and graphics

    Google Scholar 

  • Dupej J, Krajíček V, Velemínská J, Pelikán J (2014) Statistical mesh shape analysis with nonlandmark nonrigid registration. 12th symposium on geometry processing

    Google Scholar 

  • Dupej J, Krajíček V, Pelikán J (2015) Low-rank matrix approximations for coherent point drift. Pattern Recogn Lett 52:53–58

    Article  Google Scholar 

  • Durrleman S, Pennec X, Trouvé A, Ayache N, Braga J (2012) Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration. J Hum Evol 62:74–88

    Article  Google Scholar 

  • Fournier M, Combès B, Roberts N, Keller S, Crow TJ, Hopkins W, Prima S (2011) Surface-based method to evaluate global brain shape asymmetries in human and chimpanzee brains. In: 2011 I.E. International Symposium on biomedical imaging: from nano to macro. IEEE, pp 310–316

    Google Scholar 

  • Gómez-Robles A, Hopkins WD, Sherwood CC (2013) Increased morphological asymmetry, evolvability and plasticity in human brain evolution. Proc R Soc B 280:20130575

    Article  Google Scholar 

  • Gower JC (1975) Generalized procrustes analysis. Psychometrika 1:33–51

    Article  Google Scholar 

  • Gunz P (2015) Computed tools for paleoneurology. In: Bruner E (ed) Human paleoneurology. Springer, Cham, pp 177–208

    Google Scholar 

  • Gunz P, Mitteroecker P (2013) Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24:103–109

    Google Scholar 

  • Gunz P, Neubauer S, Maureille B, Hublin J-J (2010) Brain development after birth differs between Neanderthals and modern humans. Curr Biol 20:R921–R922

    Article  Google Scholar 

  • Holloway RL, De La Coste-Lareymondie MC (1982) Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. Am J Phys Anthropol 58:101–110

    Article  Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2004) Brain endocasts – the paleoneurological evidence. Wiley, Hoboken

    Google Scholar 

  • Hutton TJ, Buxton BF, Hammond P, Potts HWW (2003) Estimating average growth trajectories in shape-space using kernel smoothing. IEEE Trans Med Imaging 22:747–753

    Article  Google Scholar 

  • Krajíček V, Dupej J, Velemínská J, Pelikán J (2012) Morphometric analysis of mesh asymmetry. J WSCG 20:65–72

    Google Scholar 

  • Lieberman DE, McBratney BM, Krovitz G (2002) The evolution and development of cranial form in Homo sapiens. PNAS 99:1134–1139

    Article  Google Scholar 

  • Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32:2262–2275

    Article  Google Scholar 

  • Neubauer S, Gunz P, Hublin JJ (2009) The pattern of endocranial ontogenetic shape changes in humans. J Anat 215:240–255

    Article  Google Scholar 

  • Rilling JK (2006) Human and nonhuman primate brains: are they allometrically scaled versions of the same design? Evol Anthropol 15:65–77

    Article  Google Scholar 

  • Semendeferi K, Damasio H, Frank R, Van Hoesen GW (1997) The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. J Hum Evol 32:375–388

    Article  Google Scholar 

  • Smaers JB (2013) How humans stand out in frontal lobe scaling. PNAS 110:E3682–E3682

    Article  Google Scholar 

  • Specht M, Lebrun R, Zollikofer CPE (2007) Visualizing shape transformation between chimpanzee and human braincases. Vis Comput 23:743–751

    Article  Google Scholar 

  • Szeptycki P, Ardabilian M, Chen L, Zeng W, Gu D, Samaras D (2010) Conformal mapping-based 3D face recognition. Data Process Vis Transm Symp 3D:17–20

    Google Scholar 

  • Wang S, Wang Y, Jin M, Xiangfeng G, Samaras D (2006) 3D surface matching and recognition using conformal geometry. 2006 I.E. Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), 2006, pp 2453–2460

    Google Scholar 

  • Zeng W, Lui LM, Kong H, Gu X (2014) Surface registration by optimization in constrained diffeomorphism space. 2014 I.E. Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014, pp 4169–4176

    Google Scholar 

Download references

Acknowledgments

JD and JP are supported by the grant SVV-2016-260332. ASPP is funded by the Atapuerca Foundation, Spain. GRL is funded by the International Erasmus Mundus Doctorate in Quaternary and Prehistory consortium (IDQP). EB is supported by the Spanish Government (CGL2012-38434-C03-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Dupej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Cite this chapter

Dupej, J., Rangel de Lázaro, G., Pereira-Pedro, A.S., Píšová, H., Pelikán, J., Bruner, E. (2018). Comparing Endocranial Surfaces: Mesh Superimposition and Coherent Point Drift Registration. In: Bruner, E., Ogihara, N., Tanabe, H. (eds) Digital Endocasts. Replacement of Neanderthals by Modern Humans Series. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56582-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56582-6_10

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56580-2

  • Online ISBN: 978-4-431-56582-6

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics