Skip to main content

The Neocortex and Dorsal Ventricular Ridge: Functional Convergence and Underlying Developmental Mechanisms

  • Chapter
  • First Online:
Brain Evolution by Design

Part of the book series: Diversity and Commonality in Animals ((DCA))

Abstract

Extensive radiation of extant amniotes could have been achieved by the innovation of several unique characteristics in the body plans of their ancestors. In particular, distinct brain regions were enlarged independently to acquire similar functional properties in different amniote lineages. The neocortex and dorsal ventricular ridge (DVR) are a typical case of such parallel brain evolution in mammalian and reptilian lineages. Although these structures have distinct developmental origins, striking functional similarities in the neocortex and DVR have led to long-lasting arguments regarding their evolutionary development from ancestral amniotes. Here, we introduce morphological, neuroanatomical, and developmental aspects of the convergent and divergent features of the neocortex and DVR in amniotes. Furthermore, we discuss possible genetic changes that provided these remarkable brain structures, with special interest in the role of the Pax6 gene, an essential regulator of neural stem/progenitor cell dynamics. Comparative functional analyses of the regulatory genes required for pallial development will provide significant insights into the evolutionary origin of the hallmarks of mammalian and reptilian brains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aboitiz F, Zamorano F (2013) Neural progenitors, patterning and ecology in neocortical origins. Front Neuroanat 7:38. doi:10.3389/fnana.2013.00038

    Article  PubMed  PubMed Central  Google Scholar 

  • Asami M, Pilz GA, Ninkovic J, Godinho L, Schroeder T, Huttner WB, Gotz M (2011) The role of Pax6 in regulating the orientation and mode of cell division of progenitors in the mouse cerebral cortex. Development 138(23):5067–5078. doi:10.1242/dev.074591

    Article  CAS  PubMed  Google Scholar 

  • Assimacopoulos S, Grove EA, Ragsdale CW (2003) Identification of a Pax6-dependent epidermal growth factor family signaling source at the lateral edge of the embryonic cerebral cortex. J Neurosci 23(16):6399–6403

    CAS  PubMed  Google Scholar 

  • Belgard TG, Montiel JF, Wang WZ, Garcia-Moreno F, Margulies EH, Ponting CP, Molnár Z (2013) Adult pallium transcriptomes surprise in not reflecting predicted homologies across diverse chicken and mouse pallial sectors. Proc Natl Acad Sci USA 110(32):13150–13155. doi:10.1073/pnas.1307444110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benton M, Gauthier J, Kluge A, Rowe TB (1988) The early evolution of the Amniota. In: Benton MJ (ed) The phylogeny and classification of the tetrapods. Clarendon, Oxford, pp 103–155

    Google Scholar 

  • Bernier B, Bar I, D’Arcangelo G, Curran T, Goffinet AM (2000) Reelin mRNA expression during embryonic brain development in the chick. J Comp Neurol 422(3):448–463

    Article  CAS  PubMed  Google Scholar 

  • Bielle F, Griveau A, Narboux-Neme N, Vigneau S, Sigrist M, Arber S, Wassef M, Pierani A (2005) Multiple origins of Cajal–Retzius cells at the borders of the developing pallium. Nat Neurosci 8(8):1002–1012. doi:10.1038/nn1511

    Article  CAS  PubMed  Google Scholar 

  • Bielle F, Marcos-Mondejar P, Keita M, Mailhes C, Verney C, Nguyen Ba-Charvet K, Tessier-Lavigne M, Lopez-Bendito G, Garel S (2011) Slit2 activity in the migration of guidepost neurons shapes thalamic projections during development and evolution. Neuron 69(6):1085–1098. doi:10.1016/j.neuron.2011.02.026

    Article  CAS  PubMed  Google Scholar 

  • Borrell V, Calegari F (2014) Mechanisms of brain evolution: regulation of neural progenitor cell diversity and cell cycle length. Neurosci Res 86:14–24. doi:10.1016/j.neures.2014.04.004

    Article  PubMed  Google Scholar 

  • Bulter A, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation. Wiley, Hoboken

    Google Scholar 

  • Cabrera-Socorro A, Hernandez-Acosta NC, Gonzalez-Gomez M, Meyer G (2007) Comparative aspects of p73 and Reelin expression in Cajal-Retzius cells and the cortical hem in lizard, mouse and human. Brain Res 1132(1):59–70. doi:10.1016/j.brainres.2006.11.015

    Article  CAS  PubMed  Google Scholar 

  • Caric D, Gooday D, Hill RE, McConnell SK, Price DJ (1997) Determination of the migratory capacity of embryonic cortical cells lacking the transcription factor Pax-6. Development 124(24):5087–5096

    CAS  PubMed  Google Scholar 

  • Carney RS, Alfonso TB, Cohen D, Dai H, Nery S, Stoica B, Slotkin J, Bregman BS, Fishell G, Corbin JG (2006) Cell migration along the lateral cortical stream to the developing basal telencephalic limbic system. J Neurosci 26(45):11562–11574. doi:10.1523/JNEUROSCI.3092-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution. Freeman, New York

    Google Scholar 

  • Chan YF, Marks ME, Jones FC, Villarreal G Jr, Shapiro MD, Brady SD, Southwick AM, Absher DM, Grimwood J, Schmutz J, Myers RM, Petrov D, Jonsson B, Schluter D, Bell MA, Kingsley DM (2010) Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327(5963):302–305. doi:10.1126/science.1182213

    Article  CAS  PubMed  Google Scholar 

  • Charvet CJ (2010) A reduced progenitor pool population accounts for the rudimentary appearance of the septum, medial pallium and dorsal pallium in birds. Brain Behav Evol 76(3-4):289–300. doi:10.1159/000322102

    Article  PubMed  Google Scholar 

  • Charvet CJ, Striedter GF, Finlay BL (2011) Evo-devo and brain scaling: candidate developmental mechanisms for variation and constancy in vertebrate brain evolution. Brain Behav Evol 78(3):248–257. doi:10.1159/000329851

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung AF, Pollen AA, Tavare A, DeProto J, Molnár Z (2007) Comparative aspects of cortical neurogenesis in vertebrates. J Anat 211(2):164–176. doi:10.1111/j.1469-7580.2007.00769.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Dugas-Ford J, Rowell JJ, Ragsdale CW (2012) Cell-type homologies and the origins of the neocortex. Proc Natl Acad Sci USA 109(42):16974–16979. doi:10.1073/pnas.1204773109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estivill-Torrus G, Pearson H, van Heyningen V, Price DJ, Rashbass P (2002) Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors. Development 129(2):455–466

    CAS  PubMed  Google Scholar 

  • Fernandez AS, Pieau C, Reperant J, Boncinelli E, Wassef M (1998) Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 125(11):2099–2111

    CAS  PubMed  Google Scholar 

  • Field DJ, Gauthier JA, King BL, Pisani D, Lyson TR, Peterson KJ (2014) Toward consilience in reptile phylogeny: miRNAs support an archosaur, not lepidosaur, affinity for turtles. Evol Dev 16(4):189–196. doi:10.1111/ede.12081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fietz SA, Huttner WB (2011) Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr Opin Neurobiol 21(1):23–35. doi:10.1016/j.conb.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  • Frotscher M (1998) Cajal–Retzius cells, Reelin, and the formation of layers. Curr Opin Neurobiol 8(5):570–575

    Article  CAS  PubMed  Google Scholar 

  • Galant R, Carroll SB (2002) Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415(6874):910–913. doi:10.1038/nature717

    Article  CAS  PubMed  Google Scholar 

  • Georgala PA, Carr CB, Price DJ (2011) The role of Pax6 in forebrain development. Dev Neurobiol 71(8):690–709. doi:10.1002/dneu.20895

    Article  CAS  PubMed  Google Scholar 

  • Goffinet AM, Daumerie C, Langerwerf B, Pieau C (1986) Neurogenesis in reptilian cortical structures: 3H-thymidine autoradiographic analysis. J Comp Neurol 243(1):106–116. doi:10.1002/cne.902430109

    Article  CAS  PubMed  Google Scholar 

  • Gotz M, Stoykova A, Gruss P (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21(5):1031–1044

    Article  CAS  PubMed  Google Scholar 

  • Griveau A, Borello U, Causeret F, Tissir F, Boggetto N, Karaz S, Pierani A (2010) A novel role for Dbx1-derived Cajal–Retzius cells in early regionalization of the cerebral cortical neuroepithelium. PLoS Biol 8(7), e1000440. doi:10.1371/journal.pbio.1000440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guerreiro I, Nunes A, Woltering JM, Casaca A, Novoa A, Vinagre T, Hunter ME, Duboule D, Mallo M (2013) Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine. Proc Natl Acad Sci USA 110(26):10682–10686. doi:10.1073/pnas.1300592110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267(5205):1788–1792

    Article  CAS  PubMed  Google Scholar 

  • Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA 101(9):3196–3201. doi:10.1073/pnas.0308600100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hevner RF, Daza RA, Rubenstein JL, Stunnenberg H, Olavarria JF, Englund C (2003) Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons. Dev Neurosci 25(24):139–151. doi:72263

    Article  CAS  PubMed  Google Scholar 

  • Hevner RF, Hodge RD, Daza RA, Englund C (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55(3):223–233. doi:10.1016/j.neures.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  • Hicks SP, D’Amato CJ (1968) Cell migrations to the isocortex in the rat. Anat Rec 160(3):619–634. doi:10.1002/ar.1091600311

    Article  CAS  PubMed  Google Scholar 

  • Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM, Prosser J, Jordan T, Hastie ND, van Heyningen V (1991) Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354(6354):522–525. doi:10.1038/354522a0

    Article  CAS  PubMed  Google Scholar 

  • Hirata T, Nomura T, Takagi Y, Sato Y, Tomioka N, Fujisawa H, Osumi N (2002) Mosaic development of the olfactory cortex with Pax6-dependent and -independent components. Brain Res Dev Brain Res 136(1):17–26

    Article  CAS  PubMed  Google Scholar 

  • Hirata T, Li P, Lanuza GM, Cocas LA, Huntsman MM, Corbin JG (2009) Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala. Nat Neurosci 12(2):141–149. doi:10.1038/nn.2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmgren N (1922) Points of view concerning forebrain morphology in lower vertebrates. J Comp Neurol 34:391–459

    Article  Google Scholar 

  • Holmgren N (1925) Points of view concerning forebrain morphology in higher vertebrates. Acta Zool (Stockh) 6:413–477

    Article  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196(4295):1161–1166

    Article  CAS  PubMed  Google Scholar 

  • Jarvis ED, Gunturkun O, Bruce L, Csillag A, Karten H, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Striedter G, Wild JM, Ball GF, Dugas-Ford J, Durand SE, Hough GE, Husband S, Kubikova L, Lee DW, Mello CV, Powers A, Siang C, Smulders TV, Wada K, White SA, Yamamoto K, Yu J, Reiner A, Butler AB (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6(2):151–159. doi:10.1038/nrn1606

    Article  CAS  PubMed  Google Scholar 

  • Jarvis ED, Yu J, Rivas MV, Horita H, Feenders G, Whitney O, Jarvis SC, Jarvis ER, Kubikova L, Puck AE, Siang-Bakshi C, Martin S, McElroy M, Hara E, Howard J, Pfenning A, Mouritsen H, Chen CC, Wada K (2013) Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns. J Comp Neurol 521(16):3614–3665. doi:10.1002/cne.23404

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones ME, Cree A (2012) Tuatara. Curr Biol 22(23):R986–R987. doi:10.1016/j.cub.2012.10.049

    Article  CAS  PubMed  Google Scholar 

  • Jones L, Lopez-Bendito G, Gruss P, Stoykova A, Molnár Z (2002) Pax6 is required for the normal development of the forebrain axonal connections. Development 129(21):5041–5052

    CAS  PubMed  Google Scholar 

  • Jun S, Desplan C (1996) Cooperative interactions between paired domain and homeodomain. Development 122:2639–2650

    CAS  PubMed  Google Scholar 

  • Karten H (1969) The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann NY Acad Sci 167:164–179

    Article  Google Scholar 

  • Kemp TS (2007) The origin of higher taxa: macroevolutionary processes, and the case of the mammals. Acta Zool (Stockh) 88:3–22

    Article  Google Scholar 

  • King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188(4184):107–116

    Article  CAS  PubMed  Google Scholar 

  • Kirischuk S, Luhmann HJ, Kilb W (2014) Cajal-Retzius cells: update on structural and functional properties of these mystic neurons that bridged the 20th century. Neuroscience 275:33–46. doi:10.1016/j.neuroscience.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  • Lang D, Powell SK, Plummer RS, Young KP, Ruggeri BA (2007) PAX genes: roles in development, pathophysiology, and cancer. Biochem Pharmacol 73(1):1–14. doi:10.1016/j.bcp.2006.06.024

    Article  CAS  PubMed  Google Scholar 

  • Laurin M (2004) The evolution of body size, Cope’s rule and the origin of amniotes. Syst Biol 53(4):594–622. doi:10.1080/10635150490445706

    Article  PubMed  Google Scholar 

  • Martinez-Cerdeno V, Noctor SC, Kriegstein AR (2006) The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cereb Cortex 16((suppl 1)):i152–i161. doi:10.1093/cercor/bhk017

    Article  PubMed  Google Scholar 

  • Medina L, Reiner A (2000) Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci 23(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Medina L, Abellan A, Desfilis E (2013) A never-ending search for the evolutionary origin of the neocortex: rethinking the homology concept. Brain Behav Evol 81(3):150–153. doi:10.1159/000348282

    Article  PubMed  Google Scholar 

  • Mi D, Carr CB, Georgala PA, Huang YT, Manuel MN, Jeanes E, Niisato E, Sansom SN, Livesey FJ, Theil T, Hasenpusch-Theil K, Simpson TI, Mason JO, Price DJ (2013) Pax6 exerts regional control of cortical progenitor proliferation via direct repression of Cdk6 and hypophosphorylation of pRb. Neuron 78(2):269–284. doi:10.1016/j.neuron.2013.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131(13):3133–3145. doi:10.1242/dev.01173

    Article  CAS  PubMed  Google Scholar 

  • Modesto SP, Scott DM, MacDougall MJ, Sues HD, Evans DC, Reisz RR (2015) The oldest parareptile and the early diversification of reptiles. Proc R Soc B Biol Sci 282(1801):1–9. doi:10.1098/rspb.2014.1912

    Article  Google Scholar 

  • Molnár Z, Butler AB (2002) The corticostriatal junction: a crucial region for forebrain development and evolution. BioEssays 24(6):530–541. doi:10.1002/bies.10100

    Article  PubMed  Google Scholar 

  • Molnár Z, Metin C, Stoykova A, Tarabykin V, Price DJ, Francis F, Meyer G, Dehay C, Kennedy H (2006) Comparative aspects of cerebral cortical development. Eur J Neurosci 23(4):921–934. doi:10.1111/j.1460-9568.2006.04611.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagashima H, Hirasawa T, Sugahara F, Takechi M, Usuda R, Sato N, Kuratani S (2013) Origin of the unique morphology of the shoulder girdle in turtles. J Anat 223(6):547–556. doi:10.1111/joa.12116

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieuwenhuys R (1994) The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat Embryol 190(4):307–337

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (1998) The central nervous system of vertebrates. Springer, Berlin

    Book  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7(2):136–144. doi:10.1038/nn1172

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Takahashi M, Hara Y, Osumi N (2008) Patterns of neurogenesis and amplitude of Reelin expression are essential for making a mammalian-type cortex. PLoS One 3(1), e1454. doi:10.1371/journal.pone.0001454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nomura T, Gotoh H, Ono K (2013a) Changes in the regulation of cortical neurogenesis contribute to encephalization during amniote brain evolution. Nat Commun 4:2206. doi:10.1038/ncomms3206

    PubMed  Google Scholar 

  • Nomura T, Kawaguchi M, Ono K, Murakami Y (2013b) Reptiles: a new model for brain evo-devo research. J Exp Zool B Mol Dev Evol 320(2):57–73. doi:10.1002/jez.b.22484

    Article  PubMed  Google Scholar 

  • Nomura T, Murakami Y, Gotoh H, Ono K (2014) Reconstruction of ancestral brains: exploring the evolutionary process of encephalization in amniotes. Neurosci Res 86:25–36. doi:10.1016/j.neures.2014.03.004

    Article  PubMed  Google Scholar 

  • Nonaka-Kinoshita M, Reillo I, Artegiani B, Martinez-Martinez MA, Nelson M, Borrell V, Calegari F (2013) Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J 32(13):1817–1828. doi:10.1038/emboj.2013.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puelles L, Medina L (2002) Field homology as a way to reconcile genetic and developmental variability with adult homology. Brain Res Bull 57(3-4):243–255

    Article  PubMed  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JL (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424(3):409–438

    Article  CAS  PubMed  Google Scholar 

  • Pyron RA, Burbrink FT, Wiens JJ (2013) A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol 13:93. doi:10.1186/1471-2148-13-93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quinn JC, Molinek M, Martynoga BS, Zaki PA, Faedo A, Bulfone A, Hevner RF, West JD, Price DJ (2007) Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism. Dev Biol 302(1):50–65. doi:10.1016/j.ydbio.2006.08.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quiring R, Walldorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265(5173):785–789

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18(9):383–388

    Article  CAS  PubMed  Google Scholar 

  • Romer AS (1957) Origin of the amniote egg. Sci Mon 85(57-63)

    Google Scholar 

  • Ronshaugen M, McGinnis N, McGinnis W (2002) Hox protein mutation and macroevolution of the insect body plan. Nature 415(6874):914–917. doi:10.1038/nature716

    Article  PubMed  Google Scholar 

  • Rowe T (1996) Coevolution of the mammalian middle ear and neocortex. Science 273(5275):651–654

    Article  CAS  PubMed  Google Scholar 

  • Rowe TB, Macrini TE, Luo ZX (2011) Fossil evidence on origin of the mammalian brain. Science 332(6032):955–957. doi:10.1126/science.1203117

    Article  CAS  PubMed  Google Scholar 

  • Ruta M, Coates MI, Quicke DL (2003) Early tetrapod relationships revisited. Biol Rev Camb Philos Soc 78(2):251–345

    Article  PubMed  Google Scholar 

  • Sanchez-Villagra MR (2010) Developmental palaeontology in synapsids: the fossil record of ontogeny in mammals and their closest relatives. Proc R Soc B Biol Sci 277(1685):1139–1147. doi:10.1098/rspb.2009.2005

    Article  Google Scholar 

  • Sansom SN, Griffiths DS, Faedo A, Kleinjan DJ, Ruan Y, Smith J, van Heyningen V, Rubenstein JL, Livesey FJ (2009) The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet 5(6), e1000511. doi:10.1371/journal.pgen.1000511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sekine K, Kubo K, Nakajima K (2014) How does Reelin control neuronal migration and layer formation in the developing mammalian neocortex? Neurosci Res 86:50–58. doi:10.1016/j.neures.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  • Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V (2008) Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60(1):56–69. doi:10.1016/j.neuron.2008.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson TI, Price DJ (2002) Pax6: a pleiotropic player in development. BioEssays 24(11):1041–1051. doi:10.1002/bies.10174

    Article  CAS  PubMed  Google Scholar 

  • Stancik EK, Navarro-Quiroga I, Sellke R, Haydar TF (2010) Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex. J Neurosci 30(20):7028–7036. doi:10.1523/JNEUROSCI.6131-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterling JN (2011) The early evolution of archosaurs: relationships and the origin of major clades. Bull Am Mus Nat Hist 352:1–292

    Article  Google Scholar 

  • Striedter GF (2005) Principle of brain evolution. Sinauer, Sunderland

    Google Scholar 

  • Suzuki IK, Kawasaki T, Gojobori T, Hirata T (2012) The temporal sequence of the mammalian neocortical neurogenetic program drives mediolateral pattern in the chick pallium. Dev Cell 22(4):863–870. doi:10.1016/j.devcel.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  • Tabata H, Nakajima K (2003) Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci 23(31):9996–10001

    CAS  PubMed  Google Scholar 

  • Takiguchi-Hayashi K, Sekiguchi M, Ashigaki S, Takamatsu M, Hasegawa H, Suzuki-Migishima R, Yokoyama M, Nakanishi S, Tanabe Y (2004) Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J Neurosci 24(9):2286–2295. doi:10.1523/JNEUROSCI.4671-03.2004

    Article  CAS  PubMed  Google Scholar 

  • Teissier A, Griveau A, Vigier L, Piolot T, Borello U, Pierani A (2010) A novel transient glutamatergic population migrating from the pallial-subpallial boundary contributes to neocortical development. J Neurosci 30(31):10563–10574. doi:10.1523/JNEUROSCI.0776-10.2010

    Article  CAS  PubMed  Google Scholar 

  • Teissier A, Waclaw RR, Griveau A, Campbell K, Pierani A (2012) Tangentially migrating transient glutamatergic neurons control neurogenesis and maintenance of cerebral cortical progenitor pools. Cereb Cortex 22(2):403–416. doi:10.1093/cercor/bhr122

    Article  CAS  PubMed  Google Scholar 

  • Tissir F, Lambert De Rouvroit C, Sire JY, Meyer G, Goffinet AM (2003) Reelin expression during embryonic brain development in Crocodylus niloticus. J Comp Neurol 457(3):250–262. doi:10.1002/cne.10573

    Article  CAS  PubMed  Google Scholar 

  • Tole S, Remedios R, Saha B, Stoykova A (2005) Selective requirement of Pax6, but not Emx2, in the specification and development of several nuclei of the amygdaloid complex. J Neurosci 25(10):2753–2760. doi:10.1523/JNEUROSCI.3014-04.2005

    Article  CAS  PubMed  Google Scholar 

  • Tosa Y, Hirao A, Matsubara I, Kawaguchi M, Fukui M, Kuratani S, Murakami Y (2015) Development of the thalamo-dorsal ventricular ridge tract in the Chinese soft-shelled turtle, Pelodiscus sinensis. Dev Growth Differ 57(1):40–57. doi:10.1111/dgd.12186

    Article  CAS  PubMed  Google Scholar 

  • Tsai HM, Garber BB, Larramendi LM (1981) 3H-Thymidine autoradiographic analysis of telencephalic histogenesis in the chick embryo: I. Neuronal birthdates of telencephalic compartments in situ. J Comp Neurol 198(2):275–292. doi:10.1002/cne.901980207

    Article  CAS  PubMed  Google Scholar 

  • Tuoc TC, Radyushkin K, Tonchev AB, Pinon MC, Ashery-Padan R, Molnár Z, Davidoff MS, Stoykova A (2009) Selective cortical layering abnormalities and behavioral deficits in cortex-specific Pax6 knock-out mice. J Neurosci 29(26):8335–8349. doi:10.1523/JNEUROSCI.5669-08.2009

    Article  CAS  PubMed  Google Scholar 

  • Ulinski PS (1983) Dorsal ventricular ridge: a treatise on forebrain organization in reptiles and birds. Wiley, New York

    Google Scholar 

  • Ulinski PS (1990) The cerebral cortex of reptiles. In: Cerebral cortex, vol 8A. Plenum Press, New York, pp 139–215

    Google Scholar 

  • Wang W, Zhong J, Wang YQ (2010) Comparative genomic analysis reveals the evolutionary conservation of Pax gene family. Genes Genet Syst 85(3):193–206

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, Li C, White S, Xiong Z, Fang D, Wang B, Ming Y, Chen Y, Zheng Y, Kuraku S, Pignatelli M, Herrero J, Beal K, Nozawa M, Li Q, Wang J, Zhang H, Yu L, Shigenobu S, Wang J, Liu J, Flicek P, Searle S, Wang J, Kuratani S, Yin Y, Aken B, Zhang G, Irie N (2013) The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet 45(6):701–706. doi:10.1038/ng.2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Assimacopoulos S, Jones KR, Grove EA (2006) Massive loss of Cajal–Retzius cells does not disrupt neocortical layer order. Development 133(3):537–545. doi:10.1242/dev.02209

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Huang CT, Chen J, Pankratz MT, Xi J, Li J, Yang Y, Lavaute TM, Li XJ, Ayala M, Bondarenko GI, Du ZW, Jin Y, Golos TG, Zhang SC (2010) Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7(1):90–100. doi:10.1016/j.stem.2010.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Drs. Katsuhiko Ono and Hitoshi Gotoh for providing critical comments and suggestions for the research and Ms. Misato Kawami and Mr. Kazuhiro Arimura for technical support. This work was supported by Grant-in-Aid for Challenging Exploratory Research (#24657158), Scientific Research on Innovative Areas (The Empathetic Systems, #26118510) and PRESTO, JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Nomura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Yamashita, W., Nomura, T. (2017). The Neocortex and Dorsal Ventricular Ridge: Functional Convergence and Underlying Developmental Mechanisms. In: Shigeno, S., Murakami, Y., Nomura, T. (eds) Brain Evolution by Design. Diversity and Commonality in Animals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56469-0_12

Download citation

Publish with us

Policies and ethics