Skip to main content

Physiological and Pathological Inflammation at the Mucosal Frontline

  • Chapter
  • First Online:
Book cover Chronic Inflammation
  • 2051 Accesses

Abstract

The intestinal mucosa is covered by a single layer of epithelium, which comprises columnar epithelial cells, goblet cells, Paneth cells, and microfold (M) cells. This tightly associated physical and interactive barrier also provides bactericidal agents, mucins, and fucose to create a symbiotic and protective environment. The initial layers of the mucosal compartment constitutively regulate symbiosis with host and commensal microbiota. This regulation of symbiosis occurs through homeostatic or physiological inflammatory signalling, which is mediated by innate cell populations, including innate lymphoid cells and mast cells. However, damage to the epithelial barrier due to dysbiosis or chemical and physical stressors induces intestinal inflammation (e.g., inflammatory bowel disease [IBD]). The inflamed epithelium then releases damage-associated molecules, such as adenosine triphosphate (ATP), into the extracellular compartment. Extracellular ATP-mediated, purinergic signalling initiates the activation of innate cells (e.g., mast cells) located at the mucosal frontline, which typically function as sentinels against invasion from intestinal infections but also promote the inflammatory process upon its abnormal activation. In this chapter, we discuss these complex mucosal molecular–cellular connections and introduce advanced strategies to control chronic inflammation (e.g., IBD), especially focusing on (1) commensal mutualism, (2) the epithelial barrier, and (3) purinergic inflammatory signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64(3):445–475

    Article  CAS  PubMed  Google Scholar 

  • Aherne CM, Saeedi B, Collins CB, Masterson JC, McNamee EN, Perrenoud L, Rapp CR, Curtis VF, Bayless A, Fletcher A, Glover LE, Evans CM, Jedlicka P, Furuta GT, de Zoeten EF, Colgan SP, Eltzschig HK (2015) Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis. Mucosal Immunol 8(3):699

    Article  CAS  PubMed  Google Scholar 

  • Altwegg R, Vincent T (2014) TNF blocking therapies and immunomonitoring in patients with inflammatory bowel disease. Mediators Inflamm 2014:172821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG, Smirnova N, Berge M, Sulpice T, Lahtinen S, Ouwehand A, Langella P, Rautonen N, Sansonetti PJ, Burcelin R (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 3(9):559–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aparicio-Domingo P, Romera-Hernandez M, Karrich JJ, Cornelissen F, Papazian N, Lindenbergh-Kortleve DJ, Butler JA, Boon L, Coles MC, Samsom JN, Cupedo T (2015) Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J Exp Med 212(11):1783–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, Yagita H, Ishii N, Evans R, Honda K, Takeda K (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455(7214):808–812

    Article  CAS  PubMed  Google Scholar 

  • Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331(6015):337–341

    Article  CAS  PubMed  Google Scholar 

  • Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR, Xavier RJ, Consortium NIG, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, Van Gossum A, Zelenika D, Franchimont D, Hugot JP, de Vos M, Vermeire S, Louis E, Belgian-French IBDC, Wellcome Trust Case Control C, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad T, Prescott NJ, Onnie CM, Fisher SA, Marchini J, Ghori J, Bumpstead S, Gwilliam R, Tremelling M, Deloukas P, Mansfield J, Jewell D, Satsangi J, Mathew CG, Parkes M, Georges M, Daly MJ (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battat R, Kopylov U, Szilagyi A, Saxena A, Rosenblatt DS, Warner M, Bessissow T, Seidman E, Bitton A (2014) Vitamin B12 deficiency in inflammatory bowel disease: prevalence, risk factors, evaluation, and management. Inflamm Bowel Dis 20(6):1120–1128

    PubMed  Google Scholar 

  • Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P, Campieri M, De Simone C, Sartor RB (2005) VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol 100(7):1539–1546

    Article  PubMed  Google Scholar 

  • Brandt LJ (2013) American Journal of Gastroenterology Lecture: Intestinal microbiota and the role of fecal microbiota transplant (FMT) in treatment of C. difficile infection. Am J Gastroenterol 108(2):177–185

    Article  PubMed  Google Scholar 

  • Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108(38):16050–16055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brumfield S, Matasi JJ, Tulshian D, Czarniecki M, Greenlee W, Garlisi C, Qiu H, Devito K, Chen SC, Sun Y, Bertorelli R, Ansell J, Geiss W, Le VD, Martin GS, Vellekoop SA, Haber J, Allard ML (2011) Synthesis and SAR development of novel P2X7 receptor antagonists for the treatment of pain: part 2. Bioorg Med Chem Lett 21(24):7287–7290

    Article  CAS  PubMed  Google Scholar 

  • Bry L, Falk PG, Midtvedt T, Gordon JI (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science 273(5280):1380–1383

    Article  CAS  PubMed  Google Scholar 

  • Cammarota G, Ianiro G, Gasbarrini A (2014) Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. J Clin Gastroenterol 48(8):693–702

    Article  PubMed  Google Scholar 

  • Cario E, Gerken G, Podolsky DK (2007) Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132(4):1359–1374

    Article  CAS  PubMed  Google Scholar 

  • Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519(7541):92–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467(7317):863–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow J, Mazmanian SK (2010) A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe 7(4):265–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clevers HC, Bevins CL (2013) Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol 75:289–311

    Article  CAS  PubMed  Google Scholar 

  • Consortium UIG, Barrett JC, Lee JC, Lees CW, Prescott NJ, Anderson CA, Phillips A, Wesley E, Parnell K, Zhang H, Drummond H, Nimmo ER, Massey D, Blaszczyk K, Elliott T, Cotterill L, Dallal H, Lobo AJ, Mowat C, Sanderson JD, Jewell DP, Newman WG, Edwards C, Ahmad T, Mansfield JC, Satsangi J, Parkes M, Mathew CG, C. Wellcome Trust Case Control, Donnelly P, Peltonen L, Blackwell JM, Bramon E, Brown MA, Casas JP, Corvin A, Craddock N, Deloukas P, Duncanson A, Jankowski J, Markus HS, Mathew CG, McCarthy MI, Palmer CN, Plomin R, Rautanen A, Sawcer SJ, Samani N, Trembath RC, Viswanathan AC, Wood N, Spencer CC, Barrett JC, Bellenguez C, Davison D, Freeman C, Strange A, Donnelly P, Langford C, Hunt SE, Edkins S, Gwilliam R, Blackburn H, Bumpstead SJ, Dronov S, Gillman M, Gray E, Hammond N, Jayakumar A, McCann OT, Liddle J, Perez ML, Potter SC, Ravindrarajah R, Ricketts M, Waller M, Weston P, Widaa S, Whittaker P, Deloukas P, Peltonen L, Mathew CG, Blackwell JM, Brown MA, Corvin A, McCarthy MI, Spencer CC, Attwood AP, Stephens J, Sambrook J, Ouwehand WH, McArdle WL, Ring SM, Strachan DP (2009) Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet 41(12):1330–1334

    Article  CAS  Google Scholar 

  • Coyne MJ, Reinap B, Lee MM, Comstock LE (2005) Human symbionts use a host-like pathway for surface fucosylation. Science 307(5716):1778–1781

    Article  CAS  PubMed  Google Scholar 

  • Di Virgilio F (2007) Liaisons dangereuses: P2X(7) and the inflammasome. Trends Pharmacol Sci 28(9):465–472

    Article  PubMed  CAS  Google Scholar 

  • Diehl GE, Longman RS, Zhang JX, Breart B, Galan C, Cuesta A, Schwab SR, Littman DR (2013) Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature 494(7435):116–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dogan B, Suzuki H, Herlekar D, Sartor RB, Campbell BJ, Roberts CL, Stewart K, Scherl EJ, Araz Y, Bitar PP, Lefebure T, Chandler B, Schukken YH, Stanhope MJ, Simpson KW (2014) Inflammation-associated adherent-invasive Escherichia coli are enriched in pathways for use of propanediol and iron and M-cell translocation. Inflamm Bowel Dis 20(11):1919–1932

    Article  PubMed  Google Scholar 

  • Du J, Chen Y, Shi Y, Liu T, Cao Y, Tang Y, Ge X, Nie H, Zheng C, Li YC (2015) 1,25-Dihydroxyvitamin D Protects Intestinal Epithelial Barrier by Regulating the Myosin Light Chain Kinase Signaling Pathway. Inflamm Bowel Dis 21(11):2495–506

    Article  PubMed  Google Scholar 

  • Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GG, Boling L, Barr JJ, Speth DR, Seguritan V, Aziz RK, Felts B, Dinsdale EA, Mokili JL, Edwards RA (2014) A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun 5:4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak AM, Monahan RA, Osage JE, Dickersin GR (1978) Mast-cell degranulation in Crohn’s disease. Lancet 1(8062):498

    Article  CAS  PubMed  Google Scholar 

  • Eltzschig HK, Eckle T, Mager A, Kuper N, Karcher C, Weissmuller T, Boengler K, Schulz R, Robson SC, Colgan SP (2006) ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res 99(10):1100–1108

    Article  CAS  PubMed  Google Scholar 

  • Eltzschig HK, Sitkovsky MV, Robson SC (2012) Purinergic signaling during inflammation. N Engl J Med 367(24):2322–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eser A, Colombel JF, Rutgeerts P, Vermeire S, Vogelsang H, Braddock M, Persson T, Reinisch W (2015) Safety and Efficacy of an Oral Inhibitor of the Purinergic Receptor P2X7 in Adult Patients with Moderately to Severely Active Crohn’s Disease: A Randomized Placebo-controlled, Double-blind, Phase IIa Study. Inflamm Bowel Dis 21(10):2247–53

    PubMed  Google Scholar 

  • Florholmen J (2015) Mucosal healing in the era of biologic agents in treatment of inflammatory bowel disease. Scand J Gastroenterol 50(1):43–52

    Article  CAS  PubMed  Google Scholar 

  • Frantz AL, Rogier EW, Weber CR, Shen L, Cohen DA, Fenton LA, Bruno ME, Kaetzel CS (2012) Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunol 5(5):501–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman DJ, Kunzli BM, A-Rahim YI, Sevigny J, Berberat PO, Enjyoji K, Csizmadia E, Friess H, Robson SC (2009) From the Cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc Natl Acad Sci U S A 106(39):16788–16793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fries W, Belvedere A, Vetrano S (2013) Sealing the broken barrier in IBD: intestinal permeability, epithelial cells and junctions. Curr Drug Targets 14(12):1460–1470

    Article  CAS  PubMed  Google Scholar 

  • Gentile D, Natale M, Lazzerini PE, Capecchi PL, Laghi-Pasini F (2015) The role of P2X receptors in tissue fibrosis: a brief review. Signal, Purinergic

    Google Scholar 

  • Giannasca PJ, Giannasca KT, Leichtner AM, Neutra MR (1999) Human intestinal M cells display the sialyl Lewis A antigen. Infect Immun 67(2):946–953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goto Y, Kiyono H (2012) Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol Rev 245(1):147–163

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Obata T, Kunisawa J, Sato S, Ivanov II, Lamichhane A, Takeyama N, Kamioka M, Sakamoto M, Matsuki T, Setoyama H, Imaoka A, Uematsu S, Akira S, Domino SE, Kulig P, Becher B, Renauld JC, Sasakawa C, Umesaki Y, Benno Y, Kiyono H (2014) Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345(6202):1254009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gulbransen BD, Bashashati M, Hirota SA, Gui X, Roberts JA, MacDonald JA, Muruve DA, McKay DM, Beck PL, Mawe GM, Thompson RJ, Sharkey KA (2012) Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med 18(4):600–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton MJ, Sinnamon MJ, Lyng GD, Glickman JN, Wang X, Xing W, Krilis SA, Blumberg RS, Adachi R, Lee DM, Stevens RL (2011) Essential role for mast cell tryptase in acute experimental colitis. Proc Natl Acad Sci U S A 108(1):290–295

    Article  CAS  PubMed  Google Scholar 

  • Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, Ebisawa M, Kadokura K, Tobe T, Fujimura Y, Kawano S, Yabashi A, Waguri S, Nakato G, Kimura S, Murakami T, Iimura M, Hamura K, Fukuoka S, Lowe AW, Itoh K, Kiyono H, Ohno H (2009) Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature 462(7270):226–230

    Article  CAS  PubMed  Google Scholar 

  • Hepworth MR, Fung TC, Masur SH, Kelsen JR, McConnell FM, Dubrot J, Withers DR, Hugues S, Farrar MA, Reith W, Eberl G, Baldassano RN, Laufer TM, Elson CO, Sonnenberg GF (2015) Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T cells. Science 348(6238):1031–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hironaka I, Iwase T, Sugimoto S, Okuda K, Tajima A, Yanaga K, Mizunoe Y (2013) Glucose triggers ATP secretion from bacteria in a growth-phase-dependent manner. Appl Environ Microbiol 79(7):2328–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota SA, Ng J, Lueng A, Khajah M, Parhar K, Li Y, Lam V, Potentier MS, Ng K, Bawa M, McCafferty DM, Rioux KP, Ghosh S, Xavier RJ, Colgan SP, Tschopp J, Muruve D, MacDonald JA, Beck PL (2011) NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis 17(6):1359–1372

    Article  PubMed  Google Scholar 

  • Hofman P, Cherfils-Vicini J, Bazin M, Ilie M, Juhel T, Hebuterne X, Gilson E, Schmid-Alliana A, Boyer O, Adriouch S, Vouret-Craviari V (2015) Genetic and pharmacological inactivation of the purinergic P2RX7 receptor dampens inflammation but increases tumor incidence in a mouse model of colitis-associated cancer. Cancer Res 75(5):835–845

    Article  CAS  PubMed  Google Scholar 

  • Hormannsperger G, von Schillde MA, Haller D (2013) Lactocepin as a protective microbial structure in the context of IBD. Gut Microbes 4(2):152–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Huttenhower C, Kostic AD, Xavier RJ (2014) Inflammatory bowel disease as a model for translating the microbiome. Immunity 40(6):843–854. doi:10.1016/j.immuni.2014.05.013

    Google Scholar 

  • Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature 509(7500):310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, Scemes E (2008) P2X7 receptor-Pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 295(3):C752–C760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwase T, Shinji H, Tajima A, Sato F, Tamura T, Iwamoto T, Yoneda M, Mizunoe Y (2010) Isolation and identification of ATP-secreting bacteria from mice and humans. J Clin Microbiol 48(5):1949–1951

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang MH, Kweon MN, Iwatani K, Yamamoto M, Terahara K, Sasakawa C, Suzuki T, Nochi T, Yokota Y, Rennert PD, Hiroi T, Tamagawa H, Iijima H, Kunisawa J, Yuki Y, Kiyono H (2004) Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci U S A 101(16):6110–6115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon SG, Kayama H, Ueda Y, Takahashi T, Asahara T, Tsuji H, Tsuji NM, Kiyono H, Ma JS, Kusu T, Okumura R, Hara H, Yoshida H, Yamamoto M, Nomoto K, Takeda K (2012) Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon. PLoS Pathog 8(5), e1002714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105(39):15064–15069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaser A, Zeissig S, Blumberg RS (2010) Inflammatory bowel disease. Annu Rev Immunol 28:573–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474(7351):327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keating C, Pelegrin P, Martinez CM, Grundy D (2011) P2X7 receptor-dependent intestinal afferent hypersensitivity in a mouse model of postinfectious irritable bowel syndrome. J Immunol 187(3):1467–1474

    Article  CAS  PubMed  Google Scholar 

  • Kiyono H, McGhee JR, Michalek SM (1980) Lipopolysaccharide regulation of the immune response: comparison of responses to LPS in germfree, Escherichia coli-monoassociated and conventional mice. J Immunol 124(1):36–41

    CAS  PubMed  Google Scholar 

  • Klotz U, Schwab M (2005) Topical delivery of therapeutic agents in the treatment of inflammatory bowel disease. Adv Drug Deliv Rev 57(2):267–279

    Article  CAS  PubMed  Google Scholar 

  • Kunisawa J, Kiyono H (2015) Vitamins mediate immunological homeostasis and diseases at the surface of the body. Endocr Metab Immune Disord Drug Targets 15(1):25–30

    Article  CAS  PubMed  Google Scholar 

  • Kurashima Y, Kiyono H (2014) New era for mucosal mast cells: their roles in inflammation, allergic immune responses and adjuvant development. Exp Mol Med 46, e83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurashima Y, Amiya T, Nochi T, Fujisawa K, Haraguchi T, Iba H, Tsutsui H, Sato S, Nakajima S, Iijima H, Kubo M, Kunisawa J, Kiyono H (2012) Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat Commun 3:1034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurashima Y, Kiyono H, Kunisawa J (2015) Pathophysiological role of extracellular purinergic mediators in the control of intestinal inflammation. Mediators Inflamm 2015:427125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurtz CC, Drygiannakis I, Naganuma M, Feldman SH, Bekiaris V, Linden J, Ware CF, Ernst PB (2014) Extracellular Adenosine Regulates Colitis through Effects on Lymphoid and Non-Lymphoid Cells. J Physiol Gastrointest Liver Physiol, Am

    Google Scholar 

  • Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A, Nam JH, Rhee JH, Hwang KC, Im SH (2010) Generation of regulatory dendritic cells and CD4 + Foxp3 +  T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci U S A 107(5):2159–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Guo X, Rao JN, Zou T, Xiao L, Yu T, Timmons JA, Turner DJ, Wang JY (2009) Polyamines regulate E-cadherin transcription through c-Myc modulating intestinal epithelial barrier function. Am J Physiol Cell Physiol 296(4):C801–C810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longman RS, Diehl GE, Victorio DA, Huh JR, Galan C, Miraldi ER, Swaminath A, Bonneau R, Scherl EJ, Littman DR (2014) CX(3)CR1(+) mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med 211(8):1571–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis NA, Robinson AM, MacManus CF, Karhausen J, Scully M, Colgan SP (2008) Control of IFN-alphaA by CD73: implications for mucosal inflammation. J Immunol 180(6):4246–4255

    Article  CAS  PubMed  Google Scholar 

  • Macho Fernandez E, Pot B, Grangette C (2011) Beneficial effect of probiotics in IBD: are peptidogycan and NOD2 the molecular key effectors? Gut Microbes 2(5):280–286

    Article  PubMed  Google Scholar 

  • Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM (2000) A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288(5474):2222–2226

    Article  CAS  PubMed  Google Scholar 

  • Mar JS, Nagalingam NA, Song Y, Onizawa M, Lee JW, Lynch SV (2014) Amelioration of DSS-induced murine colitis by VSL#3 supplementation is primarily associated with changes in ileal microbiota composition. Gut Microbes 5(4):494–503

    Article  PubMed  Google Scholar 

  • Marques CC, Castelo-Branco MT, Pacheco RG, Buongusto F, do Rosario Jr, Schanaider A, Coutinho-Silva R, de Souza HS (2014) Prophylactic systemic P2X7 receptor blockade prevents experimental colitis. Biochim Biophys Acta 1842(1):65–78

    Google Scholar 

  • Mascanfroni ID, Yeste A, Vieira SM, Burns EJ, Patel B, Sloma I, Wu Y, Mayo L, Ben-Hamo R, Efroni S, Kuchroo VK, Robson SC, Quintana FJ (2013) IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat Immunol 14(10):1054–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashimo H, Wu DC, Podolsky DK, Fishman MC (1996) Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 274(5285):262–265

    Article  CAS  PubMed  Google Scholar 

  • Matsukawa T, Izawa K, Isobe M, Takahashi M, Maehara A, Yamanishi Y, Kaitani A, Okumura K, Teshima T, Kitamura T, Kitaura J (2015) Ceramide-CD300f binding suppresses experimental colitis by inhibiting ATP-mediated mast cell activation. Gut 65(5):777–787

    Article  PubMed  PubMed Central  Google Scholar 

  • McGovern, D. P., M. R. Jones, K. D. Taylor, K. Marciante, X. Yan, M. Dubinsky, A. Ippoliti, E. Vasiliauskas, D. Berel, C. Derkowski, D. Dutridge, P. Fleshner, D. Q. Shih, G. Melmed, E. Mengesha, L. King, S. Pressman, T. Haritunians, X. Guo, S. R. Targan, J. I. Rotter and I. B. D. G. C. International (2010) Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum Mol Genet 19(17):3468–3476

    Article  CAS  Google Scholar 

  • McGuckin MA, Linden SK, Sutton P, Florin TH (2011) Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9(4):265–278

    Article  CAS  PubMed  Google Scholar 

  • Miele E, Pascarella F, Giannetti E, Quaglietta L, Baldassano RN, Staiano A (2009) Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am J Gastroenterol 104(2):437–443

    Article  CAS  PubMed  Google Scholar 

  • Mifflin RC, Pinchuk IV, Saada JI, Powell DW (2011) Intestinal myofibroblasts: targets for stem cell therapy. Am J Physiol Gastrointest Liver Physiol 300(5):G684–G696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millet YA, Alvarez D, Ringgaard S, von Andrian UH, Davis BM, Waldor MK (2014) Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. PLoS Pathog 10(10), e1004405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muise AM, Walters TD, Glowacka WK, Griffiths AM, Ngan BY, Lan H, Xu W, Silverberg MS, Rotin D (2009) Polymorphisms in E-cadherin (CDH1) result in a mis-localised cytoplasmic protein that is associated with Crohn’s disease. Gut 58(8):1121–1127

    Article  CAS  PubMed  Google Scholar 

  • Nenci A, Becker C, Wullaert A, Gareus R, van Loo G, Danese S, Huth M, Nikolaev A, Neufert C, Madison B, Gumucio D, Neurath MF, Pasparakis M (2007) Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446(7135):557–561

    Article  CAS  PubMed  Google Scholar 

  • Neves AR, Castelo-Branco MT, Figliuolo VR, Bernardazzi C, Buongusto F, Yoshimoto A, Nanini HF, Coutinho CM, Carneiro AJ, Coutinho-Silva R, de Souza HS (2014) Overexpression of ATP-activated P2X7 receptors in the intestinal mucosa is implicated in the pathogenesis of Crohn’s disease. Inflamm Bowel Dis 20(3):444–457

    Article  PubMed  Google Scholar 

  • Nochi T, Yuki Y, Matsumura A, Mejima M, Terahara K, Kim DY, Fukuyama S, Iwatsuki-Horimoto K, Kawaoka Y, Kohda T, Kozaki S, Igarashi O, Kiyono H (2007) A novel M cell-specific carbohydrate-targeted mucosal vaccine effectively induces antigen-specific immune responses. J Exp Med 204(12):2789–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obata T, Goto Y, Kunisawa J, Sato S, Sakamoto M, Setoyama H, Matsuki T, Nonaka K, Shibata N, Gohda M, Kagiyama Y, Nochi T, Yuki Y, Fukuyama Y, Mukai A, Shinzaki S, Fujihashi K, Sasakawa C, Iijima H, Goto M, Umesaki Y, Benno Y, Kiyono H (2010) Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci U S A 107(16):7419–7424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochoa-Cortes F, Linan-Rico A, Jacobson KA, Christofi FL (2014) Potential for developing purinergic drugs for gastrointestinal diseases. Inflamm Bowel Dis 20(7):1259–1287

    Article  PubMed  PubMed Central  Google Scholar 

  • Ochoa-Reparaz J, Mielcarz DW, Begum-Haque S, Kasper LH (2011) Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol 69(2):240–247

    Article  CAS  PubMed  Google Scholar 

  • Odashima M, Bamias G, Rivera-Nieves J, Linden J, Nast CC, Moskaluk CA, Marini M, Sugawara K, Kozaiwa K, Otaka M, Watanabe S, Cominelli F (2005) Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 129(1):26–33

    Article  CAS  PubMed  Google Scholar 

  • Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603–606

    Article  CAS  PubMed  Google Scholar 

  • Ohman L, Simren M (2010) Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat Rev Gastroenterol Hepatol 7(3):163–173

    Article  PubMed  Google Scholar 

  • Papi C, Fasci-Spurio F, Rogai F, Settesoldi A, Margagnoni G, Annese V (2013) Mucosal healing in inflammatory bowel disease: treatment efficacy and predictive factors. Dig Liver Dis 45(12):978–985

    Article  CAS  PubMed  Google Scholar 

  • Petersen C, Round JL (2014) Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16(7):1024–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham TA, Clare S, Goulding D, Arasteh JM, Stares MD, Browne HP, Keane JA, Page AJ, Kumasaka N, Kane L, Mottram L, Harcourt K, Hale C, Arends MJ, Gaffney DJ, Sanger Mouse Genetics Project, Dougan G, Lawley TD (2014) Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 16(4):504–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, Golovkina TV, Bogatyrev SR, Ismagilov RF, Pamer EG, Turnbaugh PJ, Chervonsky AV (2014) Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514(7524):638–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podolsky DK, Gerken G, Eyking A, Cario E (2009) Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3 deficiency. Gastroenterology 137(1):209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proietti M, Cornacchione V, Rezzonico Jost T, Romagnani A, Faliti CE, Perruzza L, Rigoni R, Radaelli E, Caprioli F, Preziuso S, Brannetti B, Thelen M, McCoy KD, Slack E, Traggiai E, Grassi F (2014) ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer’s patches to promote host-microbiota mutualism. Immunity 41(5):789–801

    Article  CAS  PubMed  Google Scholar 

  • Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118(2):229–241

    Article  CAS  PubMed  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492

    CAS  PubMed  Google Scholar 

  • Randall TD, Carragher DM, Rangel-Moreno J (2008) Development of secondary lymphoid organs. Annu Rev Immunol 26:627–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rausch P, Rehman A, Kunzel S, Hasler R, Ott SJ, Schreiber S, Rosenstiel P, Franke A, Baines JF (2011) Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci U S A 108(47):19030–19035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, Gordon JI (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466(7304):334–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieder F, Fiocchi C (2009) Intestinal fibrosis in IBD--a dynamic, multifactorial process. Nat Rev Gastroenterol Hepatol 6(4):228–235

    Article  CAS  PubMed  Google Scholar 

  • Rivera J, Fierro NA, Olivera A, Suzuki R (2008) New insights on mast cell activation via the high affinity receptor for IgE. Adv Immunol 98:85–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roggenbuck D, Hausdorf G, Martinez-Gamboa L, Reinhold D, Buttner T, Jungblut PR, Porstmann T, Laass MW, Henker J, Buning C, Feist E, Conrad K (2009) Identification of GP2, the major zymogen granule membrane glycoprotein, as the autoantigen of pancreatic antibodies in Crohn’s disease. Gut 58(12):1620–1628

    Article  CAS  PubMed  Google Scholar 

  • Roggenbuck D, Reinhold D, Werner L, Schierack P, Bogdanos DP, Conrad K (2013) Glycoprotein 2 antibodies in Crohn’s disease. Adv Clin Chem 60:187–208

    Article  CAS  PubMed  Google Scholar 

  • Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126(6):1620–1633

    Article  PubMed  Google Scholar 

  • Sato S, Kaneto S, Shibata N, Takahashi Y, Okura H, Yuki Y, Kunisawa J, Kiyono H (2013) Transcription factor Spi-B-dependent and -independent pathways for the development of Peyer’s patch M cells. Mucosal Immunol 6(4):838–846

    Article  CAS  PubMed  Google Scholar 

  • Scaldaferri F, Gerardi V, Lopetuso LR, Del Zompo F, Mangiola F, Boskoski I, Bruno G, Petito V, Laterza L, Cammarota G, Gaetani E, Sgambato A, Gasbarrini A (2013) Gut microbial flora, prebiotics, and probiotics in IBD: their current usage and utility. Biomed Res Int 2013:435268

    Article  PubMed  PubMed Central  Google Scholar 

  • Sears CL, Geis AL, Housseau F (2014) Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest 124(10):4166–4172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson HL, Campbell BJ, Rhodes JM (2014) IBD: microbiota manipulation through diet and modified bacteria. Dig Dis 32(Suppl 1):18–25

    Article  PubMed  Google Scholar 

  • Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J, Shibata N, Grunberg S, Sinha R, Zahm AM, Tardif MR, Sathaliyawala T, Kubota M, Farber DL, Collman RG, Shaked A, Fouser LA, Weiner DB, Tessier PA, Friedman JR, Kiyono H, Bushman FD, Chang KM, Artis D (2012) Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336(6086):1321–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun M, He C, Cong Y, Liu Z (2015) Regulatory immune cells in regulation of intestinal inflammatory response to microbiota. Mucosal Immunol 8(5):969–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terahara K, Yoshida M, Igarashi O, Nochi T, Pontes GS, Hase K, Ohno H, Kurokawa S, Mejima M, Takayama N, Yuki Y, Lowe AW, Kiyono H (2008) Comprehensive gene expression profiling of Peyer’s patch M cells, villous M-like cells, and intestinal epithelial cells. J Immunol 180(12):7840–7846

    Article  CAS  PubMed  Google Scholar 

  • Thabane M, Kottachchi DT, Marshall JK (2007) Systematic review and meta-analysis: The incidence and prognosis of post-infectious irritable bowel syndrome. Aliment Pharmacol Ther 26(4):535–544

    Article  CAS  PubMed  Google Scholar 

  • Thompson JA, Oliveira RA, Djukovic A, Ubeda C, Xavier KB (2015) Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep 10(11):1861–1871

    Article  CAS  PubMed  Google Scholar 

  • Tsai SH, Kinoshita M, Kusu T, Kayama H, Okumura R, Ikeda K, Shimada Y, Takeda A, Yoshikawa S, Obata-Ninomiya K, Kurashima Y, Sato S, Umemoto E, Kiyono H, Karasuyama H, Takeda K (2015) The ectoenzyme E-NPP3 negatively regulates ATP-dependent chronic allergic responses by basophils and mast cells. Immunity 42(2):279–293

    Article  CAS  PubMed  Google Scholar 

  • Umesaki Y, Setoyama H, Matsumoto S, Okada Y (1993) Expansion of alpha beta T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79(1):32–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uo M, Hisamatsu T, Miyoshi J, Kaito D, Yoneno K, Kitazume MT, Mori M, Sugita A, Koganei K, Matsuoka K, Kanai T, Hibi T (2013) Mucosal CXCR4+ IgG plasma cells contribute to the pathogenesis of human ulcerative colitis through FcgammaR-mediated CD14 macrophage activation. Gut 62(12):1734–1744

    Article  CAS  PubMed  Google Scholar 

  • Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 105(52):20858–20863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, Buller HA, Dekker J, Van Seuningen I, Renes IB, Einerhand AW (2006) Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131(1):117–129

    Article  PubMed  CAS  Google Scholar 

  • Van Praet JT, Donovan E, Vanassche I, Drennan MB, Windels F, Dendooven A, Allais L, Cuvelier CA, van de Loo F, Norris PS, Kruglov AA, Nedospasov SA, Rabot S, Tito R, Raes J, Gaboriau-Routhiau V, Cerf-Bensussan N, Van de Wiele T, Eberl G, Ware CF, Elewaut D (2015) Commensal microbiota influence systemic autoimmune responses. EMBO J 34(4):466–474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S, Kucherlapati R, Lipkin M, Yang K, Augenlicht L (2002) Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295(5560):1726–1729

    Article  CAS  PubMed  Google Scholar 

  • Verbeke KA, Boesmans L, Boets E (2014) Modulating the microbiota in inflammatory bowel diseases: prebiotics, probiotics or faecal transplantation? Proc Nutr Soc 73(4):490–497

    Article  PubMed  Google Scholar 

  • Vora P, Youdim A, Thomas LS, Fukata M, Tesfay SY, Lukasek K, Michelsen KS, Wada A, Hirayama T, Arditi M, Abreu MT (2004) Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J Immunol 173(9):5398–5405

    Article  CAS  PubMed  Google Scholar 

  • Wehkamp J, Harder J, Weichenthal M, Schwab M, Schaffeler E, Schlee M, Herrlinger KR, Stallmach A, Noack F, Fritz P, Schroder JM, Bevins CL, Fellermann K, Stange EF (2004) NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut 53(11):1658–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein DL, O’Neill BL, Hone DM, Metcalf ES (1998) Differential early interactions between Salmonella enterica serovar Typhi and two other pathogenic Salmonella serovars with intestinal epithelial cells. Infect Immun 66(5):2310–2318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, Littman DR, Benoist C, Mathis D (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32(6):815–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu MQ, Cao HL, Wang WQ, Wang S, Cao XC, Yan F, Wang BM (2015) Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol 21(1):102–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Levings MK, Steiner TS (2012) ATP conditions intestinal epithelial cells to an inflammatory state that promotes components of DC maturation. Eur J Immunol 42(12):3310–3321

    Article  CAS  PubMed  Google Scholar 

  • Ye JH, Rajendran VM (2009) Adenosine: an immune modulator of inflammatory bowel diseases. World J Gastroenterol 15(36):4491–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti TD (2010) The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32(3):379–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Kawasaki H, Hsu SC, Lee RT, Yao X, Plunkett B, Fu J, Yang K, Lee YC, Huang SK (2010) Oral tolerance to food-induced systemic anaphylaxis mediated by the C-type lectin SIGNR1. Nat Med 16(10):1128–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We appreciate our former and current colleagues and collaborators who have been providing their expertise for our understanding of (1) commensal mutualism, (2) the epithelial barrier, and (3) purinergic inflammatory signalling.

Financial Support and Sponsorship

This work was supported by grants from the Core Research for Evolutional Science and Technology Program of the Japan Science and Technology Agency (to H.K.); the Ministry of Education, Science, Sports, and Technology of Japan (MEXT: Grant-in Aid for Scientific Research S [H.K.] and Research Activity Start-up [26893047 to Y.K].); the Young Researcher Overseas Visits Program for Vitalising Brain Circulation (Japan Society for the Promotion of Science, H.K.); and MEXT Translational Research Network Program (at the University of Tokyo) Seeds B and C.

Conflicts of Interest

The authors have no competing interests to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kiyono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kurashima, Y., Kiyono, H. (2016). Physiological and Pathological Inflammation at the Mucosal Frontline. In: Miyasaka, M., Takatsu, K. (eds) Chronic Inflammation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56068-5_43

Download citation

Publish with us

Policies and ethics