Skip to main content

Elucidation and Control of the Mechanisms Underlying Chronic Inflammation Mediated by Invariant Natural Killer T Cells

  • Chapter
  • First Online:
Chronic Inflammation
  • 1979 Accesses

Abstract

Invariant natural killer T (iNKT) cells are a subpopulation of T lymphocytes with unique specificities against (glyco)lipids presented in the context of CD1d belonging to major histocompatibility complex (MHC) class Ib. They recognise microbially encoded or synthetic glycolipids directly through their CD1d-restricted T-cell receptors (TCRs) other than microbial components or lipids including pathogen-associated molecular patterns (PAMPs) and bacterial superantigens. Once activated, iNKT cells participate as early effectors and/or regulators of immune responses. Immunoregulatory cytokines produced in copious amounts by these cells target a wide range of downstream effector cells and help shape the ensuing immune responses. Mammals comprise various numbers and isoforms of CD1 molecules, suggesting that (glyco)lipid presentation is a rapidly evolving component of the immune system, which adapts to environmental threats. Recent progress in our understanding of CD1d-restricted iNKT cells contributes to their true potentials in immunotherapeutic applications for various diseases. Recent findings about iNKT cell subtypes (iNKT1, 2, 17, 10) and their roles in pathological inflammation are also introduced and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbari O, Stock P, Meyer E, Kronenberg M, Sidobre S, Nakayama T, Taniguchi M, Grusby MJ, DeKruyff RH, Umetsu DT (2003) Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 9:582–588

    Article  CAS  PubMed  Google Scholar 

  • Angkasekwinai P, Chang SH, Thapa M, Watarai H, Dong C (2010) Regulation of IL-9 expression by IL-25 signaling. Nat Immunol 11:250–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araki M, Kondo T, Gumperz JE, Brenner MB, Miyake S, Yamamura T (2003) Th2 bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int Immunol 15:279–288

    Article  CAS  PubMed  Google Scholar 

  • Beaudoin L, Laloux V, Novak J, Lucas B, Lehuen A (2002) NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic beta cells. Immunity 17:725–736

    Article  CAS  PubMed  Google Scholar 

  • Bedel R, Matsuda JL, Brigl M, White J, Kappler J, Marrack P, Gapin L (2013) Lower TCR repertoire diversity in Traj18-deficient mice. Nat Immunol 13:705–706

    Article  Google Scholar 

  • Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336

    Article  CAS  PubMed  Google Scholar 

  • Benlagha K, Kyin T, Beavis A, Teyton L, Bendelac A (2002) A thymic precursor to the NK T cell lineage. Science 296:553–555

    Article  CAS  PubMed  Google Scholar 

  • Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, Bendelac A (1999) Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163:4647–4650

    CAS  PubMed  Google Scholar 

  • Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, Pack M, Hutchinson A, Geller M, Liu N, Annable R, Shay J, Kirchhoff K, Nishi N, Ando Y, Hayashi K, Hassoun H, Steinman RM, Dhodapkar MV (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201:1503–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang P-P, Barral P, Fitch J, Pratama A, Ma CS, Kallies A, Hogan JJ, Cerundolo V, Tangye SG, Bittman R, Nutt SL, Brink R, Godfrey DI, Batista FD, Vinuesa CG (2011) Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat Immunol 13:35–43

    Article  PubMed  Google Scholar 

  • Chung B, Aoukaty A, Dutz J, Terhorst C, Tan R (2005) Signaling lymphocytic activation moleculeassociated protein controls NKT cell functions. J Immunol 174:3153–3157

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Shin T, Kawano T, Sato H, Kondo E, Toura I, Kaneko Y, Koseki H, Kanno M, Taniguchi M (1997) Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 278:1623–1626

    Article  CAS  PubMed  Google Scholar 

  • Doisne JM, Becourt C, Amniai L, Duarte N, Le Luduec JB, Eberl G, Benlagha K (2009) Skin and peripheral lymph node invariant NKT cells are mainly retinoic acid receptor-related orphan receptor γt + and respond preferentially under inflammatory conditions. J Immunol 183:2142–2149

    Article  CAS  PubMed  Google Scholar 

  • Doisne JM, Soulard V, Becourt C, Amniai L, Henrot P, Havenar-Daughton C, Blanchet C, Zitvogel L, Ryffel B, Cavaillon JM, Marie JC, Couillin I, Benlagha K (2011) Cutting edge: crucial role of IL-1 and IL-23 in the innate IL-17 response of peripheral lymph node NK1.1- invariant NKT cells to bacteria. J Immunol 186:662–666

    Article  CAS  PubMed  Google Scholar 

  • Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A, Hewett DR, Mcllgorm A, Jolin HE, McKenzie AN (2006) Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med 203:1105–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gern JE, Busse WW (2000) The role of viral infections in the natural history of asthma. J Allergy Clin Immunol 106:201–212

    Article  CAS  PubMed  Google Scholar 

  • Giaccone G, Punt CJ, Ando Y, Ruijter R, Nishi N, Peters M, von Blomberg BM, Scheper RJ, van der Vliet HJ, van den Eertwegh AJ, Roelvink M, Beijnen J, Zwierzina H, Pinedo HM (2002) A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8:3702–3709

    CAS  PubMed  Google Scholar 

  • Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4:231–237

    Article  CAS  PubMed  Google Scholar 

  • Grubor-Bauk B, Simmons A, Mayrhofer G, Speck PG (2003) Impaired clearance of herpes simplex virus type 1 from mice lacking CD1d or NKT cells expressing the semivariant V alpha 14-J alpha 281 TCR. J Immunol 170:1430–1434

    Article  CAS  PubMed  Google Scholar 

  • Hamelin ME, Prince GA, Gomez AM, Kinkead R, Boivin G (2006) Human metapneumovirus infection induces long-term pulmonary inflammation associated with airway obstruction and hyperresponsiveness in mice. J Infect Dis 193:1634–1642

    Article  PubMed  Google Scholar 

  • Hammond KJ, Poulton LD, Palmisano LJ, Silveira PA, Godfrey DI, Baxter AG (1998) Alpha/beta-T cell receptor (TCR) + CD4-CD8- (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD/Lt) mice by the influence of interleukin (IL)-4 and/or IL-10. J Exp Med 187:1047–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayakawa Y, Takeda K, Yagita H, Kakuta S, Iwakura Y, Van Kaer L, Saiki I, Okumura K (2001) Critical contribution of IFN-gamma and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of alpha-galactosylceramide. Eur J Immunol 31:1720–1727

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa Y, Rovero S, Forni G, Smyth MJ (2003) Alpha-galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proc Natl Acad Sci U S A 100:9464–9469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayakawa Y, Godfrey DI, Smyth MJ (2004) Alpha-galactosylceramide: potential immunomodulatory activity and future application. Curr Med Chem 11:241–252

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Wilson MT, Serizawa I, Wu L, Singh N, Naidenko OV, Miura T, Haba T, Scherer DC, Wei J, Kronenberg M, Koezuka Y, Van Kaer L (2001) The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 7:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Jahng AW, Maricic I, Pedersen B, Burdin N, Naidenko O, Kronenberg M, Koezuka Y, Kumar V (2001) Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med 194:1789–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278:1626–1629

    Article  CAS  PubMed  Google Scholar 

  • Kim EY, Battaile JT, Patel AC, You Y, Agapov E, Grayson MH, Benoit LA, Byers DE, Alevy Y, Tucker J, Swanson S, Tidwell R, Tyner JW, Morton JD, Castro M, Polineni D, Patterson GA, Schwendener RA, Allard JD, Peltz G, Holtzman MJ (2008) Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat Med 14:633–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King IL, Amiel E, Tighe M, Mohrs K, Veerapen N, Besra G, Mohrs M, Leadbetter EA (2011) Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner. Nat Immunol 13:44–50

    Article  PubMed  Google Scholar 

  • Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525

    Article  CAS  PubMed  Google Scholar 

  • Kojo S, Seino K, Harada M, Watarai H, Wakao H, Uchida T, Nakayama T, Taniguchi M (2005) Induction of regulatory properties in dendritic cells by Valpha14 NKT cells. J Immunol 175:3648–3655

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Belperron A, Barthold SW, Bockenstedt LK (2000) Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, Borrelia burgdorferi. J Immunol 165:4797–4801

    Article  CAS  PubMed  Google Scholar 

  • MacDonald HR (1995) NK1.1+ T cell receptor-alpha/beta+ cells: new clues to their origin, specificity, and function. J Exp Med 182:633–638

    Article  CAS  PubMed  Google Scholar 

  • Makino Y, Kanno R, Ito T, Higashino K, Taniguchi M (1995) Predominant expression of invariant Vα14+ TCR α chain in NK1.1+ T cell populations. Int Immunol 7:1157–1161

    Article  CAS  PubMed  Google Scholar 

  • Mattner J, Debord KL, Ismail N, Goff RD, Cantu C 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage PB, Bendelac A (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529

    Article  CAS  PubMed  Google Scholar 

  • Mendiratta SK, Martin WD, Hong S, Boesteanu A, Joyce S, Van Kaer L (1997) CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 6:469–477

    Article  CAS  PubMed  Google Scholar 

  • Meyer EH, Goya S, Akbari O, Berry GJ, Savage PB, Kronenberg M, Nakayama T, DeKruyff RH, Umetsu DT (2006) Glycolipid activation of invariant T cell receptor + NKT cells is sufficient to induce airway hyperreactivity independent of conventional CD4 + T cells. Proc Natl Acad Sci U S A 103:2782–2787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel ML, Keller AC, Paget C, Fujio M, Trottein F, Savage PB, Wong CH, Schneider E, Dy M, Leite-de-Moraes MC (2007) Identification of an IL-17-producing NK1.1− iNKT cell population involved in airway neutrophilia. J Exp Med 204:995–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel ML, Mendes-da-Cruz D, Keller AC, Lochner M, Schneider E, Dy M, Eberl G, Leite-de-Moraes MC (2008) Critical role of ROR-γt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc Natl Acad Sci U S A 105:19845–19850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita M, Motoki K, Akimoto K, Natori T, Sakai T, Sawa E, Yamaji K, Koezuka Y, Kobayashi E, Fukushima H (1995) Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J Med Chem 38:2176–2187

    Article  CAS  PubMed  Google Scholar 

  • Motomura Y, Kitamura H, Hijikata A, Matsunaga Y, Matsumoto K, Inoue H, Atarashi K, Hori S, Watarai H, Zhu J, Taniguchi M, Kubo M (2011) The transcription factor E4BP4 regulates the production of IL-10 and IL-13 in CD4+ T cells. Nat Immunol 12:450–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natori T, Morita M, Akimoto K, Koezuka Y (1994) Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron 50:2771–2784

    Article  CAS  Google Scholar 

  • Nichols KE, Hom J, Gong SY, Ganguly A, Ma CS, Gong SY, Ganguly A, Ma CS, Cannons JL, Tangye SG, Schwartzberg PL, Koretzky GA, Stein PL (2005) Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med 11:340–345

    Article  CAS  PubMed  Google Scholar 

  • Ortaldo JR, Young HA, Winkler-Pickett RT, Bere EW Jr, Murphy WJ, Wiltrout RH (2004) Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides. J Immunol 172:943–953

    Article  CAS  PubMed  Google Scholar 

  • Pasquier B, Yin L, Fondaneche MC, Relouzat F, Bloch-Queyrat C, Lambert N, Fischer A, de Saint-Basile G, Latour S (2005) Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J Exp Med 201:695–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellicci DG, Uldrich AP, Kyparissoudis K, Crowe NY, Brooks AG, Hammond KJ, Sidobre S, Kronenberg M, Smyth MJ, Godfrey DI (2002) A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1− CD4+ CD1d-dependent precursor stage. J Exp Med 195:835–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porcelli S, Yockey CE, Brenner MB, Balk SP (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8-alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178:1–16

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JM, Lee YH, Shi Y, Wang X, Angkasekwinai P, Nallaparaju KC, Flaherty S, Chang SH, Watarai H, Dong C (2015) Interleukin-17B antagonizes interleukin-25-mediated mucosal inflammation. Immunity 42:692–703

    Article  CAS  PubMed  Google Scholar 

  • Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V, Soulas P, Galicier L, Le Deist F, Rieux-Laucat F, Revy P, Fischer A, de Saint BG, Latour S (2006) XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444:110–114

    Article  CAS  PubMed  Google Scholar 

  • Roberts TJ, Lin Y, Spence PM, Van Kaer L, Brutkiewicz RR (2004) CD1d1-dependent control of the magnitude of an acute antiviral immune response. J Immunol 172:3454–3461

    Article  CAS  PubMed  Google Scholar 

  • Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G (2014) IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest 124:3725–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salio M, Silk JD, Jones EY, Cerundolo V (2014) Biology of CD1- and MR1-restricted T cells. Annu Rev Immunol 32:323–366

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RE, Murray C, Daley JF, Schlossman SF, Ritz J (1986) A subset of natural killer cells in peripheral blood displays a mature T cell phenotype. J Exp Med 164:351–356

    Article  CAS  PubMed  Google Scholar 

  • Sigurs N, Gustafsson PM, Bjarnason R, Lundberg F, Schmidt S, Sigurbergsson F, Kjellman B (2005) Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13. Am J Respir Crit Care Med 171:137–141

    Article  PubMed  Google Scholar 

  • Singh AK, Wilson MT, Hong S, Olivares-Villagómez D, Du C, Stanic AK, Joyce S, Sriram S, Koezuka Y, Van Kaer L (2001) Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 194:1801–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth MJ, Crowe NY, Pellicci DG, Kyparissoudis K, Kelly JM, Takeda K, Yagita H, Godfrey DI (2002a) Sequential production of interferon-gamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood 99:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Smyth MJ, Crowe NY, Takeda K, Yagita H, Godfrey DI (2002b) NKT cells – conductors of tumor immunity? Curr Opin Immunol 14:165–171

    Article  CAS  PubMed  Google Scholar 

  • Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR (2005) Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 35:1692–1701

    Article  CAS  PubMed  Google Scholar 

  • Terashima A, Watarai H, Inoue S, Sekine E, Nakagawa R, Hase K, Iwamura C, Nakajima H, Nakayama T, Taniguchi M (2008) A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J Exp Med 205:2727–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watarai H, Fujii S, Yamada D, Rybouchkin A, Sakata S, Nagata Y, Iida-Kobayashi M, Sekine-Kondo E, Shimizu K, Shozaki Y, Sharif J, Matsuda M, Mochiduki S, Hasegawa T, Kitahara G, Endo TA, Toyoda T, Ohara O, Harigaya K, Koseki H, Taniguchi M (2010) Murine induced pluripotent stem cells can be derived from and differentiate into natural killer T cells. J Clin Invest 120:2610–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watarai H, Yamada D, Fujii S, Taniguchi M, Koseki H (2012a) Induced pluripotency as a potential path towards iNKT cell-mediated cancer immunotherapy. Int J Hematol 95:624–631

    Article  CAS  PubMed  Google Scholar 

  • Watarai H, Sekine-Kondo E, Shigeura T, Motomura Y, Yasuda T, Satoh R, Yoshida H, Kubo M, Kawamoto H, Koseki H, Taniguchi M (2012b) Development and function of invariant natural killer T cells producing Th2- and Th17-cytokines. PLoS Biol 10, e1001255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:821–852

    Article  CAS  PubMed  Google Scholar 

  • Wieland Brown LC, Penaranda C, Kashyap PC, Williams BB, Clardy J, Kronenberg M, Sonnenburg JL, Comstock LE, Bluestone JA, Fischbach MA (2013) Production of α-galactosylceramide by a prominent member of the human gut microbiota. PLoS Biol 11, e1001610

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu K, Byers DE, Jin X, Agapov E, Alexander-Brett J, Patel AC, Cella M, Gilfilan S, Colonna M, Kober DL, Brett TJ, Holtzman MJ (2015) TREM-2 promotes macrophage survival and lung disease after respiratory viral infection. J Exp Med 212:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Watarai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Watarai, H. (2016). Elucidation and Control of the Mechanisms Underlying Chronic Inflammation Mediated by Invariant Natural Killer T Cells. In: Miyasaka, M., Takatsu, K. (eds) Chronic Inflammation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56068-5_27

Download citation

Publish with us

Policies and ethics