Skip to main content

Bile Acid as Therapeutic Agents

  • Chapter
  • First Online:

Abstract

Bile acids are the amphipathic compounds produced as the end products of cholesterol metabolism in the liver. Due to their detergent properties, bile acids play important roles in micelle formation and in intestinal lipid absorption. Besides such classical functions, bile acids modulate a number of intracellular signaling cascades involved in apoptosis, immune response, and carcinogenesis. In addition, recent findings showed that bile acids are endogenous ligands of the farnesoid X receptor (FXR; nuclear receptor (NR) subfamily 1 group H member 4 (NR1H4)) and the membrane-bound G-protein-coupled bile acid receptor 1 (GP-BAR1, commonly known as TGR5), indicating that bile acids themselves are signaling molecules. Taken together with the fact that both FXR and TGR5 regulate various physiological processes, including lipid metabolism, glucose metabolism, and energy expenditure, these findings suggest that modulation of bile acid metabolism and/or signaling would be a potential therapeutic strategy for the treatment of several diseases. In this context, bile acid-related drugs (agents) such as ursodeoxycholic acid, bile acid mimetics, and bile acid sequestrants have garnered the attention as therapeutic agents with pleiotropic properties. This chapter aims to provide an overview of the clinical efficacy and limitations of pharmacotherapies with bile acid-related drugs and to discuss molecular mechanisms underlying their pharmacological activities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147–91. doi:10.1152/physrev.00010.2008.

    Article  CAS  PubMed  Google Scholar 

  2. Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, et al. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet. 1998;20(3):233–8. doi:10.1038/3034.

    Article  CAS  PubMed  Google Scholar 

  3. Hayashi H, Takada T, Suzuki H, Akita H, Sugiyama Y. Two common PFIC2 mutations are associated with the impaired membrane trafficking of BSEP/ABCB11. Hepatology. 2005;41(4):916–24. doi:10.1002/hep.20627.

    Article  CAS  PubMed  Google Scholar 

  4. Edenharder R, Knaflic T. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by human intestinal lecithinase-lipase-negative Clostridia. J Lipid Res. 1981;22(4):652–8.

    CAS  PubMed  Google Scholar 

  5. Wong MH, Oelkers P, Craddock AL, Dawson PA. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem. 1994;269(2):1340–7.

    CAS  PubMed  Google Scholar 

  6. Wong MH, Oelkers P, Dawson PA. Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J Biol Chem. 1995;270(45):27228–34.

    Article  CAS  PubMed  Google Scholar 

  7. Dawson PA, Hubbert M, Haywood J, Craddock AL, Zerangue N, Christian WV, et al. The heteromeric organic solute transporter alpha-beta, Ostalpha-Ostbeta, is an ileal basolateral bile acid transporter. J Biol Chem. 2005;280(8):6960–8. doi:10.1074/jbc.M412752200.

    Article  CAS  PubMed  Google Scholar 

  8. Ballatori N, Christian WV, Lee JY, Dawson PA, Soroka CJ, Boyer JL, et al. OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology. 2005;42(6):1270–9. doi:10.1002/hep.20961.

    Article  CAS  PubMed  Google Scholar 

  9. Hagenbuch B, Stieger B, Foguet M, Lubbert H, Meier PJ. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A. 1991;88(23):10629–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hagenbuch B, Meier PJ. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest. 1994;93(3):1326–31. doi:10.1172/JCI117091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meier PJ, Stieger B. Bile salt transporters. Annu Rev Physiol. 2002;64:635–61. doi:10.1146/annurev.physiol.64.082201.100300.

    Article  CAS  PubMed  Google Scholar 

  12. Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap – bile acids in metabolic control. Nat Rev Endocrinol. 2014;10(8):488–98. doi:10.1038/nrendo.2014.60.

    Article  CAS  PubMed  Google Scholar 

  13. Li T, Chiang JY. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev. 2014;66(4):948–83. doi:10.1124/pr.113.008201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284(5418):1362–5.

    Article  CAS  PubMed  Google Scholar 

  15. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284(5418):1365–8.

    Article  CAS  PubMed  Google Scholar 

  16. Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun. 2002;298(5):714–9.

    Article  CAS  PubMed  Google Scholar 

  17. de Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013;17(5):657–69. doi:10.1016/j.cmet.2013.03.013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Paumgartner G, Beuers U. Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology. 2002;36(3):525–31. doi:10.1053/jhep.2002.36088.

    Article  CAS  PubMed  Google Scholar 

  19. Hagey LR, Crombie DL, Espinosa E, Carey MC, Igimi H, Hofmann AF. Ursodeoxycholic acid in the Ursidae: biliary bile acids of bears, pandas, and related carnivores. J Lipid Res. 1993;34(11):1911–7.

    CAS  PubMed  Google Scholar 

  20. Ikegami T, Matsuzaki Y. Ursodeoxycholic acid: mechanism of action and novel clinical applications. Hepatol Res. 2008;38(2):123–31. doi:10.1111/j.1872-034X.2007.00297.x.

    CAS  PubMed  Google Scholar 

  21. Shoda M. Über die Ursodesoxycholsäure aus Bärengallen und ihre physiologische Wirkung. J Biochem. 1927;7(3):505–17.

    Article  CAS  Google Scholar 

  22. Ichida F. Clinical experience with ursodeoxycholic acid (S-Urso) for chronic hepatitis. Sindan-to-tiryou. 1961;49:388–92.

    Google Scholar 

  23. Makino I, Shinozaki K, Yoshino K, Nakagawa S. Dissolution of cholesterol gallstones by long-term administration of ursodeoxycholic acid. Nihon Shokakibyo Gakkai Zasshi. 1975;72(6):690–702.

    CAS  PubMed  Google Scholar 

  24. Corrigan OI, Su CC, Higuchi WI, Hofmann AF. Mesophase formation during cholesterol dissolution in ursodeoxycholate-lecithin solutions: new mechanism for gallstone dissolution in humans. J Pharm Sci. 1980;69(7):869–71.

    Article  CAS  PubMed  Google Scholar 

  25. Nilsell K, Angelin B, Leijd B, Einarsson K. Comparative effects of ursodeoxycholic acid and chenodeoxycholic acid on bile acid kinetics and biliary lipid secretion in humans. Evidence for different modes of action on bile acid synthesis. Gastroenterology. 1983;85(6):1248–56.

    CAS  PubMed  Google Scholar 

  26. von Bergmann K, Epple-Gutsfeld M, Leiss O. Differences in the effects of chenodeoxycholic and ursodeoxycholic acid on biliary lipid secretion and bile acid synthesis in patients with gallstones. Gastroenterology. 1984;87(1):136–43.

    Google Scholar 

  27. Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000;290(5497):1771–5.

    Article  CAS  PubMed  Google Scholar 

  28. Yu L, Hammer RE, Li-Hawkins J, Von Bergmann K, Lutjohann D, Cohen JC, et al. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci USA. 2002;99(25):16237–42. doi:10.1073/pnas.252582399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vrins C, Vink E, Vandenberghe KE, Frijters R, Seppen J, Groen AK. The sterol transporting heterodimer ABCG5/ABCG8 requires bile salts to mediate cholesterol efflux. FEBS Lett. 2007;581(24):4616–20. doi:10.1016/j.febslet.2007.08.052.

    Article  CAS  PubMed  Google Scholar 

  30. Yamanashi Y, Takada T, Yoshikado T, Shoda J, Suzuki H. NPC2 regulates biliary cholesterol secretion via stimulation of ABCG5/G8-mediated cholesterol transport. Gastroenterology. 2011;140(5):1664–74. doi:10.1053/j.gastro.2011.01.050.

    Article  CAS  PubMed  Google Scholar 

  31. Roda E, Roda A, Sama C, Festi D, Mazzella G, Aldini R, et al. Effect of ursodeoxycholic acid administration on biliary lipid composition and bile acid kinetics in cholesterol gallstone patients. Dig Dis Sci. 1979;24(2):123–8.

    Article  CAS  PubMed  Google Scholar 

  32. Salvioli G, Salati R. Faecal bile acid loss and bile acid pool size during short-term treatment with ursodeoxycholic and chenodeoxycholic acid in patients with radiolucent gallstones. Gut. 1979;20(8):698–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bell GD, Whitney B, Dowling RH. Gallstone dissolution in man using chenodeoxycholic acid. Lancet. 1972;2(7789):1213–6.

    Article  CAS  PubMed  Google Scholar 

  34. Danzinger RG, Hofmann AF, Schoenfield LJ, Thistle JL. Dissolution of cholesterol gallstones by chenodeoxycholic acid. N Engl J Med. 1972;286(1):1–8. doi:10.1056/NEJM197201062860101.

    Article  CAS  PubMed  Google Scholar 

  35. Stiehl A, Raedsch R, Czygan P, Gotz R, Manner C, Walker S, et al. Effects of biliary bile acid composition on biliary cholesterol saturation in gallstone patients treated with chenodeoxycholic acid and/or ursodeoxycholic acid. Gastroenterology. 1980;79(6):1192–8.

    CAS  PubMed  Google Scholar 

  36. Stiehl A, Czygan P, Kommerell B, Weis HJ, Holtermuller KH. Ursodeoxycholic acid versus chenodeoxycholic acid. Comparison of their effects on bile acid and bile lipid composition in patients with cholesterol gallstones. Gastroenterology. 1978;75(6):1016–20.

    CAS  PubMed  Google Scholar 

  37. Mok HY, Bell GD, Dowling RH. Effect of different doses of chenodeoxycholic acid on bile-lipid composition and on frequency of side-effects in patients with gallstones. Lancet. 1974;2(7875):253–7.

    Article  CAS  PubMed  Google Scholar 

  38. Poupon RE, Balkau B, Eschwege E, Poupon R. A multicenter, controlled trial of ursodiol for the treatment of primary biliary cirrhosis. UDCA-PBC Study Group. N Engl J Med. 1991;324(22):1548–54. doi:10.1056/NEJM199105303242204.

    Article  CAS  PubMed  Google Scholar 

  39. Lindor KD, Dickson ER, Baldus WP, Jorgensen RA, Ludwig J, Murtaugh PA, et al. Ursodeoxycholic acid in the treatment of primary biliary cirrhosis. Gastroenterology. 1994;106(5):1284–90.

    Article  CAS  PubMed  Google Scholar 

  40. Palma J, Reyes H, Ribalta J, Hernandez I, Sandoval L, Almuna R, et al. Ursodeoxycholic acid in the treatment of cholestasis of pregnancy: a randomized, double-blind study controlled with placebo. J Hepatol. 1997;27(6):1022–8.

    Article  CAS  PubMed  Google Scholar 

  41. Puoti C, Pannullo A, Annovazzi G, Filippi T, Magrini A. Ursodeoxycholic acid and chronic hepatitis C infection. Lancet. 1993;341(8857):1413–4.

    Article  CAS  PubMed  Google Scholar 

  42. Takano S, Ito Y, Yokosuka O, Ohto M, Uchiumi K, Hirota K, et al. A multicenter randomized controlled dose study of ursodeoxycholic acid for chronic hepatitis C. Hepatology. 1994;20(3):558–64.

    Article  CAS  PubMed  Google Scholar 

  43. Attili AF, Angelico M, Cantafora A, Alvaro D, Capocaccia L. Bile acid-induced liver toxicity: relation to the hydrophobic-hydrophilic balance of bile acids. Med Hypotheses. 1986;19(1):57–69.

    Article  CAS  PubMed  Google Scholar 

  44. Heuman DM. Quantitative estimation of the hydrophilic-hydrophobic balance of mixed bile salt solutions. J Lipid Res. 1989;30(5):719–30.

    CAS  PubMed  Google Scholar 

  45. Guldutuna S, Zimmer G, Imhof M, Bhatti S, You T, Leuschner U. Molecular aspects of membrane stabilization by ursodeoxycholate [see comment]. Gastroenterology. 1993;104(6):1736–44.

    Article  CAS  PubMed  Google Scholar 

  46. Guicciardi ME, Gores GJ. Apoptosis: a mechanism of acute and chronic liver injury. Gut. 2005;54(7):1024–33. doi:10.1136/gut.2004.053850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Roberts PJ, Svingen PA, et al. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest. 1999;103(1):137–45. doi:10.1172/JCI4765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ. Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med. 1998;4(3):165–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Botla R, Spivey JR, Aguilar H, Bronk SF, Gores GJ. Ursodeoxycholate (UDCA) inhibits the mitochondrial membrane permeability transition induced by glycochenodeoxycholate: a mechanism of UDCA cytoprotection. J Pharmacol Exp Ther. 1995;272(2):930–8.

    CAS  PubMed  Google Scholar 

  50. Schoemaker MH, Conde de la Rosa L, Buist-Homan M, Vrenken TE, Havinga R, Poelstra K, et al. Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology. 2004;39(6):1563–73. doi:10.1002/hep.20246.

    Article  CAS  PubMed  Google Scholar 

  51. Beuers U, Bilzer M, Chittattu A, Kullak-Ublick GA, Keppler D, Paumgartner G, et al. Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C-dependent mechanisms in cholestatic rat liver. Hepatology. 2001;33(5):1206–16. doi:10.1053/jhep.2001.24034.

    Article  CAS  PubMed  Google Scholar 

  52. Kitani K, Ohta M, Kanai S. Tauroursodeoxycholate prevents biliary protein excretion induced by other bile salts in the rat. Am J Physiol. 1985;248(4 Pt 1):G407–17.

    CAS  PubMed  Google Scholar 

  53. Jazrawi RP, de Caestecker JS, Goggin PM, Britten AJ, Joseph AE, Maxwell JD, et al. Kinetics of hepatic bile acid handling in cholestatic liver disease: effect of ursodeoxycholic acid. Gastroenterology. 1994;106(1):134–42.

    Article  CAS  PubMed  Google Scholar 

  54. Poupon RE, Chretien Y, Poupon R, Paumgartner G. Serum bile acids in primary biliary cirrhosis: effect of ursodeoxycholic acid therapy. Hepatology. 1993;17(4):599–604.

    Article  CAS  PubMed  Google Scholar 

  55. Paulusma CC, Bosma PJ, Zaman GJ, Bakker CT, Otter M, Scheffer GL, et al. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science. 1996;271(5252):1126–8.

    Article  CAS  PubMed  Google Scholar 

  56. Ito K, Suzuki H, Hirohashi T, Kume K, Shimizu T, Sugiyama Y. Functional analysis of a canalicular multispecific organic anion transporter cloned from rat liver. J Biol Chem. 1998;273(3):1684–8.

    Article  CAS  PubMed  Google Scholar 

  57. Dombrowski F, Stieger B, Beuers U. Tauroursodeoxycholic acid inserts the bile salt export pump into canalicular membranes of cholestatic rat liver. Lab Invest J Tech Methods Pathol. 2006;86(2):166–74. doi:10.1038/labinvest.3700371.

    Article  CAS  Google Scholar 

  58. Ikebuchi Y, Shimizu H, Ito K, Yoshikado T, Yamanashi Y, Takada T, et al. Ursodeoxycholic acid stimulates the formation of the bile canalicular network. Biochem Pharmacol. 2012;84(7):925–35. doi:10.1016/j.bcp.2012.07.008.

    Article  CAS  PubMed  Google Scholar 

  59. Roma MG, Toledo FD, Boaglio AC, Basiglio CL, Crocenzi FA, Sanchez Pozzi EJ. Ursodeoxycholic acid in cholestasis: linking action mechanisms to therapeutic applications. Clin Sci. 2011;121(12):523–44. doi:10.1042/CS20110184.

    Article  CAS  PubMed  Google Scholar 

  60. Poupon RE, Poupon R, Balkau B. Ursodiol for the long-term treatment of primary biliary cirrhosis. The UDCA-PBC Study Group. N Engl J Med. 1994;330(19):1342–7. doi:10.1056/NEJM199405123301903.

    Article  CAS  PubMed  Google Scholar 

  61. Yoshikawa M, Tsujii T, Matsumura K, Yamao J, Matsumura Y, Kubo R, et al. Immunomodulatory effects of ursodeoxycholic acid on immune responses. Hepatology. 1992;16(2):358–64.

    Article  CAS  PubMed  Google Scholar 

  62. Terasaki S, Nakanuma Y, Ogino H, Unoura M, Kobayashi K. Hepatocellular and biliary expression of HLA antigens in primary biliary cirrhosis before and after ursodeoxycholic acid therapy. Am J Gastroenterol. 1991;86(9):1194–9.

    CAS  PubMed  Google Scholar 

  63. Calmus Y, Gane P, Rouger P, Poupon R. Hepatic expression of class I and class II major histocompatibility complex molecules in primary biliary cirrhosis: effect of ursodeoxycholic acid. Hepatology. 1990;11(1):12–5.

    Article  CAS  PubMed  Google Scholar 

  64. Tanaka H, Makino Y, Miura T, Hirano F, Okamoto K, Komura K, et al. Ligand-independent activation of the glucocorticoid receptor by ursodeoxycholic acid. Repression of IFN-gamma-induced MHC class II gene expression via a glucocorticoid receptor-dependent pathway. J Immunol. 1996;156(4):1601–8.

    CAS  PubMed  Google Scholar 

  65. van Milligen de Wit AW, Kuiper H, Camoglio L, van Bracht J, Jones EA, Tytgat GN, et al. Does ursodeoxycholic acid mediate immunomodulatory and anti-inflammatory effects in patients with primary sclerosing cholangitis? Eur J Gastroenterol Hepatol. 1999;11(2):129–36.

    Article  PubMed  Google Scholar 

  66. Lindor KD, Kowdley KV, Heathcote EJ, Harrison ME, Jorgensen R, Angulo P, et al. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology. 2004;39(3):770–8. doi:10.1002/hep.20092.

    Article  CAS  PubMed  Google Scholar 

  67. Dufour JF, Oneta CM, Gonvers JJ, Bihl F, Cerny A, Cereda JM, et al. Randomized placebo-controlled trial of ursodeoxycholic acid with vitamin e in nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2006;4(12):1537–43. doi:10.1016/j.cgh.2006.09.025.

    Article  CAS  PubMed  Google Scholar 

  68. Leuschner UF, Lindenthal B, Herrmann G, Arnold JC, Rossle M, Cordes HJ, et al. High-dose ursodeoxycholic acid therapy for nonalcoholic steatohepatitis: a double-blind, randomized, placebo-controlled trial. Hepatology. 2010;52(2):472–9. doi:10.1002/hep.23727.

    Article  CAS  PubMed  Google Scholar 

  69. Ratziu V, de Ledinghen V, Oberti F, Mathurin P, Wartelle-Bladou C, Renou C, et al. A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis. J Hepatol. 2011;54(5):1011–9. doi:10.1016/j.jhep.2010.08.030.

    Article  CAS  PubMed  Google Scholar 

  70. Namisaki T, Noguchi R, Moriya K, Kitade M, Aihara Y, Douhara A, et al. Beneficial effects of combined ursodeoxycholic acid and angiotensin-II type 1 receptor blocker on hepatic fibrogenesis in a rat model of nonalcoholic steatohepatitis. J Gastroenterol. 2015; doi:10.1007/s00535-015-1104-x.

    PubMed  Google Scholar 

  71. Centuori SM, Martinez JD. Differential regulation of EGFR-MAPK signaling by deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) in colon cancer. Dig Dis Sci. 2014;59(10):2367–80. doi:10.1007/s10620-014-3190-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Payne CM, Crowley-Skillicorn C, Bernstein C, Holubec H, Moyer MP, Bernstein H. Hydrophobic bile acid-induced micronuclei formation, mitotic perturbations, and decreases in spindle checkpoint proteins: relevance to genomic instability in colon carcinogenesis. Nutr Cancer. 2010;62(6):825–40. doi:10.1080/01635581003695756.

    Article  CAS  PubMed  Google Scholar 

  73. Qiao D, Stratagouleas ED, Martinez JD. Activation and role of mitogen-activated protein kinases in deoxycholic acid-induced apoptosis. Carcinogenesis. 2001;22(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  74. Im E, Martinez JD. Ursodeoxycholic acid (UDCA) can inhibit deoxycholic acid (DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human colon cancer cells. J Nutr. 2004;134(2):483–6.

    CAS  PubMed  Google Scholar 

  75. Earnest DL, Holubec H, Wali RK, Jolley CS, Bissonette M, Bhattacharyya AK, et al. Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxycholic acid. Cancer Res. 1994;54(19):5071–4.

    CAS  PubMed  Google Scholar 

  76. Ikegami T, Matsuzaki Y, Shoda J, Kano M, Hirabayashi N, Tanaka N. The chemopreventive role of ursodeoxycholic acid in azoxymethane-treated rats: suppressive effects on enhanced group II phospholipase A2 expression in colonic tissue. Cancer Lett. 1998;134(2):129–39.

    Article  CAS  PubMed  Google Scholar 

  77. Narisawa T, Fukaura Y, Terada K, Sekiguchi H. Inhibitory effects of ursodeoxycholic acid on N-methylnitrosourea-induced colon carcinogenesis and colonic mucosal telomerase activity in F344 rats. J Exp Clin Cancer Res: CR. 1999;18(2):259–66.

    CAS  PubMed  Google Scholar 

  78. Kurtz WJ, Guldutuna S, Leuschner U. Differing effect of chenodeoxycholic acid and ursodeoxycholic acid on bile acids in rat colonic wall and contents. Tokai J Exp Clin Med. 1988;13(2):91–7.

    CAS  PubMed  Google Scholar 

  79. Serfaty L, De Leusse A, Rosmorduc O, Desaint B, Flejou JF, Chazouilleres O, et al. Ursodeoxycholic acid therapy and the risk of colorectal adenoma in patients with primary biliary cirrhosis: an observational study. Hepatology. 2003;38(1):203–9. doi:10.1053/jhep.2003.50311.

    Article  CAS  PubMed  Google Scholar 

  80. Pardi DS, Loftus Jr EV, Kremers WK, Keach J, Lindor KD. Ursodeoxycholic acid as a chemopreventive agent in patients with ulcerative colitis and primary sclerosing cholangitis. Gastroenterology. 2003;124(4):889–93. doi:10.1053/gast.2003.50156.

    Article  CAS  PubMed  Google Scholar 

  81. Alberts DS, Martinez ME, Hess LM, Einspahr JG, Green SB, Bhattacharyya AK, et al. Phase III trial of ursodeoxycholic acid to prevent colorectal adenoma recurrence. J Natl Cancer Inst. 2005;97(11):846–53. doi:10.1093/jnci/dji144.

    Article  CAS  PubMed  Google Scholar 

  82. Thompson PA, Wertheim BC, Roe DJ, Ashbeck EL, Jacobs ET, Lance P, et al. Gender modifies the effect of ursodeoxycholic acid in a randomized controlled trial in colorectal adenoma patients. Cancer Prev Res. 2009;2(12):1023–30. doi:10.1158/1940-6207.CAPR-09-0234.

    Article  CAS  Google Scholar 

  83. Trauner M, Halilbasic E, Claudel T, Steinacher D, Fuchs C, Moustafa T, et al. Potential of nor-ursodeoxycholic acid in cholestatic and metabolic disorders. Dig Dis. 2015;33(3):433–9. doi:10.1159/000371904.

    Article  PubMed  Google Scholar 

  84. Hofmann AF, Zakko SF, Lira M, Clerici C, Hagey LR, Lambert KK, et al. Novel biotransformation and physiological properties of norursodeoxycholic acid in humans. Hepatology. 2005;42(6):1391–8. doi:10.1002/hep.20943.

    Article  CAS  PubMed  Google Scholar 

  85. Fickert P, Wagner M, Marschall HU, Fuchsbichler A, Zollner G, Tsybrovskyy O, et al. 24-norUrsodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology. 2006;130(2):465–81. doi:10.1053/j.gastro.2005.10.018.

    Article  CAS  PubMed  Google Scholar 

  86. Fickert P, Pollheimer MJ, Silbert D, Moustafa T, Halilbasic E, Krones E, et al. Differential effects of norUDCA and UDCA in obstructive cholestasis in mice. J Hepatol. 2013;58(6):1201–8. doi:10.1016/j.jhep.2013.01.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ruetz S, Gros P. Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell. 1994;77(7):1071–81.

    Article  CAS  PubMed  Google Scholar 

  88. Deleuze JF, Jacquemin E, Dubuisson C, Cresteil D, Dumont M, Erlinger S, et al. Defect of multidrug-resistance 3 gene expression in a subtype of progressive familial intrahepatic cholestasis. Hepatology. 1996;23(4):904–8. doi:10.1002/hep.510230435.

    Article  CAS  PubMed  Google Scholar 

  89. Denk GU, Maitz S, Wimmer R, Rust C, Invernizzi P, Ferdinandusse S, et al. Conjugation is essential for the anticholestatic effect of NorUrsodeoxycholic acid in taurolithocholic acid-induced cholestasis in rat liver. Hepatology. 2010;52(5):1758–68. doi:10.1002/hep.23911.

    Article  CAS  PubMed  Google Scholar 

  90. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005;2(4):217–25. doi:10.1016/j.cmet.2005.09.001.

    Article  CAS  PubMed  Google Scholar 

  91. Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, et al. Tissue-specific expression of beta Klotho and fibroblast growth factor (FGF) receptor Isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007;282(37):26687–95. doi:10.1074/jbc.M704165200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Okuwaki M, Takada T, Iwayanagi Y, Koh S, Kariya Y, Fujii H, et al. LXR alpha transactivates mouse organic solute transporter alpha and beta via IR-1 elements shared with FXR. Pharm Res. 2007;24(2):390–8. doi:10.1007/s11095-006-9163-6.

    Article  CAS  PubMed  Google Scholar 

  93. Calkin AC, Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol. 2012;13(4):213–24. doi:10.1038/nrm3312.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Keitel V, Donner M, Winandy S, Kubitz R, Haussinger D. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun. 2008;372(1):78–84. doi:10.1016/j.bbrc.2008.04.171.

    Article  CAS  PubMed  Google Scholar 

  95. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10(3):167–77. doi:10.1016/j.cmet.2009.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005;329(1):386–90. doi:10.1016/j.bbrc.2005.01.0139.

    Article  CAS  PubMed  Google Scholar 

  97. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9. doi:10.1038/nature04330.

    Article  CAS  PubMed  Google Scholar 

  98. Pellicciari R, Fiorucci S, Camaioni E, Clerici C, Costantino G, Maloney PR, et al. 6 alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem. 2002;45(17):3569–72. doi:Unsp Jm025529g doi:10.1021/Jm025529g.

    Article  CAS  PubMed  Google Scholar 

  99. Pellicciari R, Gioiello A, Macchiarulo A, Thomas C, Rosatelli E, Natalini B, et al. Discovery of 6 alpha-Ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J Med Chem. 2009;52(24):7958–61. doi:10.1021/jm901390p.

    Article  CAS  PubMed  Google Scholar 

  100. Rizzo G, Passeri D, De Franco F, Ciaccioli G, Donadio L, Rizzo G, et al. Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. Mol Pharmacol. 2010;78(4):617–30. doi:10.1124/mol.110.064501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fiorucci S, Distrutti E, Ricci P, Giuliano V, Donini A, Baldelli F. Targeting FXR in cholestasis: hype or hope. Expert Opin Ther Targets. 2014;18(12):1449–59. doi:10.1517/14728222.2014.956087.

    CAS  PubMed  Google Scholar 

  102. Hirschfield GM, Mason A, Luketic V, Lindor K, Gordon SC, Mayo M, et al. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology. 2015;148(4):751–U347. doi:10.1053/j.gastro.2014.12.005.

    Article  CAS  PubMed  Google Scholar 

  103. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956–65. doi:10.1016/S0140-6736(14)61933-4.

    Article  CAS  PubMed  Google Scholar 

  104. Alemi F, Kwon E, Poole DP, Lieu T, Lyo V, Cattaruzza F, et al. The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Investig. 2013;123(4):1513–30. doi:10.1172/JCI64551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, et al. Vitamin D receptor as an intestinal bile acid sensor. Science. 2002;296(5571):1313–6. doi:10.1126/science.1070477.

    Article  CAS  PubMed  Google Scholar 

  106. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci USA. 2001;98(6):3369–74. doi:10.1073/pnas.051551698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Out C, Groen AK, Brufau G. Bile acid sequestrants: more than simple resins. Curr Opin Lipidol. 2012;23(1):43–55. doi:10.1097/MOL.0b013e32834f0ef3.

    Article  CAS  PubMed  Google Scholar 

  108. Grundy SM, Ahrens EH, Salen G. Interruption of enterohepatic circulation of bile acids in man – comparative effects of cholestyramine and ileal exclusion on cholesterol metabolism. J Lab Clin Med. 1971;78(1):94.

    CAS  PubMed  Google Scholar 

  109. Herrema H, Meissner M, van Dijk TH, Brufau G, Boverhof R, Oosterveer MH, et al. Bile salt sequestration induces hepatic de novo lipogenesis through farnesoid X receptor- and liver X receptor alpha-controlled metabolic pathways in mice. Hepatology. 2010;51(3):806–16. doi:10.1002/hep.23408.

    Article  CAS  PubMed  Google Scholar 

  110. Sato R. Sterol metabolism and SREBP activation. Arch Biochem Biophys. 2010;501(2):177–81. doi:10.1016/j.abb.2010.06.004.

    Article  CAS  PubMed  Google Scholar 

  111. Couture P, Lamarche B. Ezetimibe and bile acid sequestrants: impact on lipoprotein metabolism and beyond. Curr Opin Lipidol. 2013;24(3):227–32. doi:10.1097/MOL.0b013e3283613a55.

    Article  CAS  PubMed  Google Scholar 

  112. Rosenblum SB, Huynh T, Afonso A, Davis HR, Yumibe N, Clader JW, et al. Discovery of 1-(4-fluorophenyl)-(3R)-[3-(4-fluorophenyl)-(3S)-hydroxypropyl]-(4S)-(4-hydroxyphenyl)-2-azetidinone (SCH 58235): a designed, potent, orally active inhibitor of cholesterol absorption. J Med Chem. 1998;41(6):973–80. doi:10.1021/Jm970701f.

    Article  CAS  PubMed  Google Scholar 

  113. Altmann SW, Davis HR, Zhu LJ, Yao XR, Hoos LM, Tetzloff G, et al. Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303(5661):1201–4. doi:10.1126/Science.1093131.

    Article  CAS  PubMed  Google Scholar 

  114. Yamanashi Y, Takada T, Suzuki H. Niemann-Pick C1-like 1 overexpression facilitates ezetimibe-sensitive cholesterol and beta-sitosterol uptake in CaCo-2 cells. J Pharmacol Exp Ther. 2007;320(2):559–64. doi:10.1124/jpet.106.114181.

    Article  CAS  PubMed  Google Scholar 

  115. Ventimiglia JB, Levesque MC, Chang TY. Preparation and characterization of unilamellar vesicles from cholate phospholipid micelle treated with cholestyramine. Anal Biochem. 1986;157(2):323–30. doi:10.1016/0003-2697(86)90633-0.

    Article  CAS  PubMed  Google Scholar 

  116. Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes-mellitus – a short-term, double-blind. Crossover Trial Ann Intern Med. 1994;121(6):416–22.

    Article  CAS  PubMed  Google Scholar 

  117. Handelsman Y, Goldberg RB, Garvey WT, Fonseca VA, Rosenstock J, Jones MR, et al. Colesevelam hydrochloride to treat hypercholesterolemia and improve glycemia in prediabetes: a randomized. Prospect Study Endocrinol Pract. 2010;16(4):617–28. doi:10.4158/EP10129.OR.

    Google Scholar 

  118. Yamakawa T, Takano T, Utsunomiya H, Kadonosono K, Okamura A. Effect of colestimide therapy for glycemic control in type 2 diabetes mellitus with hypercholesterolemia. Endocr J. 2007;54(1):53–8. doi:10.1507/Endocrj.K05-098.

    Article  CAS  PubMed  Google Scholar 

  119. Chen LH, McNulty J, Anderson D, Liu YP, Nystrom C, Bullard S, et al. Cholestyramine reverses hyperglycemia and enhances glucose-stimulated glucagon-like peptide 1 release in Zucker diabetic fatty rats. J Pharmacol Exp Ther. 2010;334(1):164–70. doi:10.1124/jpet.110.166892.

    Article  CAS  PubMed  Google Scholar 

  120. Shang Q, Saumoy M, Holst JJ, Salen G, Xu GR. Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1. Am J Physiol-Gastrointest Liver. 2010;298(3):G419–G24. doi:10.1152/ajpgi.00362.2009.

    Article  CAS  Google Scholar 

  121. Suzuki T, Oba K, Igari Y, Matsumura N, Watanabe K, Futami-Suda S, et al. Colestimide lowers plasma glucose levels and increases plasma glucagon-like PEPTIDE-1 (7-36) levels in patients with type 2 diabetes mellitus complicated by hypercholesterolemia. J Nippon Med Sch Nippon Ika Daigaku Zasshi. 2007;74(5):338–43.

    Article  CAS  PubMed  Google Scholar 

  122. Harach T, Pols TWH, Nomura M, Maida A, Watanabe M, Auwerx J et al. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci Rep-Uk. 2012;2. doi:Artn 430, 10.1038/Srep00430.

  123. Prawitt J, Abdelkarim M, Stroeve JHM, Popescu I, Duez H, Velagapudi VR, et al. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes. 2011;60(7):1861–71. doi:10.2337/db11-0030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li F, Jiang CT, Krausz KW, Li YF, Albert I, Hao HP et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun. 2013;4. doi:Artn 2384, 10.1038/Ncomms3384.

  125. Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015;21(2):71–7. doi:10.1038/nm.3760.

    Article  CAS  Google Scholar 

  126. Trabelsi MS, Daoudi M, Prawitt J, Ducastel S, Touche V, Sayin SI et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat Commun. 2015;6. doi:Artn 7629, 10.1038/Ncomms8629.

  127. Narushima K, Takada T, Yamanashi Y, Suzuki H. Niemann-pick C1-like 1 mediates alpha-tocopherol transport. Mol Pharmacol. 2008;74(1):42–9. doi:10.1124/mol.107.043034.

    Article  CAS  PubMed  Google Scholar 

  128. Takada T, Suzuki H. Molecular mechanisms of membrane transport of vitamin E. Mol Nutr Food Res. 2010;54(5):616–22. doi:10.1002/mnfr.200900481.

    Article  CAS  PubMed  Google Scholar 

  129. Takada T, Yamanashi Y, Konishi K, Yamamoto T, Toyoda Y, Masuo Y, et al. NPC1L1 is a key regulator of intestinal vitamin K absorption and a modulator of warfarin therapy. Sci Transl Med. 2015;7(275):275ra23. doi:10.1126/scitranslmed.3010329.

    Article  CAS  PubMed  Google Scholar 

  130. Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113(10):1408–18. doi:10.1172/JCI21025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pineda Torra I, Claudel T, Duval C, Kosykh V, Fruchart JC, Staels B. Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor. Mol Endocrinol. 2003;17(2):259–72. doi:10.1210/me.2002-0120.

    Article  PubMed  CAS  Google Scholar 

  132. Kariya Y, Honma M, Suzuki H. Systems-based understanding of pharmacological responses with combinations of multidisciplinary methodologies. Biopharm Drug Dispos. 2013;34(9):489–507. doi:10.1002/bdd.1865.

    Article  CAS  PubMed  Google Scholar 

  133. Brufau G, Stellaard F, Prado K, Bloks VW, Jonkers E, Boverhof R, et al. Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology. 2010;52(4):1455–64. doi:10.1002/hep.23831.

    Article  CAS  PubMed  Google Scholar 

  134. The Lipid Research Clinics Coronary Primary Prevention Trial results. I. Reduction in incidence of coronary heart disease. Jama. 1984;251(3):351–64.

    Google Scholar 

  135. Brensike JF, Levy RI, Kelsey SF, Passamani ER, Richardson JM, Loh IK, et al. Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: results of the NHLBI Type II Coronary Intervention Study. Circulation. 1984;69(2):313–24.

    Article  CAS  PubMed  Google Scholar 

  136. Hunninghake DB, Stein EA, Bremner WF, Greenland P, Demke DM, Oliphant TH. Dose – response study of colestipol tablets in patients with moderate hypercholesterolemia. Am J Ther. 1995;2(3):180–9.

    Article  PubMed  Google Scholar 

  137. Insull Jr W, Toth P, Mullican W, Hunninghake D, Burke S, Donovan JM, et al. Effectiveness of colesevelam hydrochloride in decreasing LDL cholesterol in patients with primary hypercholesterolemia: a 24-week randomized controlled trial. Mayo Clin Proc. 2001;76(10):971–82. doi:10.4065/76.10.971.

    Article  CAS  PubMed  Google Scholar 

  138. Denke MA, Grundy SM. Efficacy of low-dose cholesterol-lowering drug therapy in men with moderate hypercholesterolemia. Arch Intern Med. 1995;155(4):393–9.

    Article  CAS  PubMed  Google Scholar 

  139. Suzuki T, Oba K, Igari Y, Watanabe K, Matsumura N, Futami-Suda S, et al. Effects of bile-acid-binding resin (colestimide) on blood glucose and visceral fat in Japanese patients with type 2 diabetes mellitus and hypercholesterolemia: an open-label, randomized, case-control, crossover study. J Diabetes Complicat. 2012;26(1):34–9. doi:10.1016/j.jdiacomp.2011.11.008.

    Article  CAS  PubMed  Google Scholar 

  140. Brown G, Albers JJ, Fisher LD, Schaefer SM, Lin JT, Kaplan C, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med. 1990;323(19):1289–98. doi:10.1056/NEJM199011083231901.

    Article  CAS  PubMed  Google Scholar 

  141. Hunninghake D, Insull Jr W, Toth P, Davidson D, Donovan JM, Burke SK. Coadministration of colesevelam hydrochloride with atorvastatin lowers LDL cholesterol additively. Atherosclerosis. 2001;158(2):407–16.

    Article  CAS  PubMed  Google Scholar 

  142. Davidson MH, Toth P, Weiss S, McKenney J, Hunninghake D, Isaacsohn J, et al. Low-dose combination therapy with colesevelam hydrochloride and lovastatin effectively decreases low-density lipoprotein cholesterol in patients with primary hypercholesterolemia. Clin Cardiol. 2001;24(6):467–74.

    Article  CAS  PubMed  Google Scholar 

  143. Knapp HH, Schrott H, Ma P, Knopp R, Chin B, Gaziano JM, et al. Efficacy and safety of combination simvastatin and colesevelam in patients with primary hypercholesterolemia. Am J Med. 2001;110(5):352–60.

    Article  CAS  PubMed  Google Scholar 

  144. Bays H, Rhyne J, Abby S, Lai YL, Jones M. Lipid-lowering effects of colesevelam HCl in combination with ezetimibe. Curr Med Res Opin. 2006;22(11):2191–200. doi:10.1185/030079906X148436.

    Article  CAS  PubMed  Google Scholar 

  145. McKenney J, Jones M, Abby S. Safety and efficacy of colesevelam hydrochloride in combination with fenofibrate for the treatment of mixed hyperlipidemia. Curr Med Res Opin. 2005;21(9):1403–12. doi:10.1185/030079905X59157.

    Article  CAS  PubMed  Google Scholar 

  146. Handelsman Y, Goldberg RB, Garvey WT, Fonseca VA, Rosenstock J, Jones MR, et al. Colesevelam hydrochloride to treat hypercholesterolemia and improve glycemia in prediabetes: a randomized, prospective study. Endocr Pract. 2010;16(4):617–28. doi:10.4158/EP10129.OR.

    Article  PubMed  Google Scholar 

  147. Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial. Ann Intern Med. 1994;121(6):416–22.

    Article  CAS  PubMed  Google Scholar 

  148. Bays HE, Goldberg RB, Truitt KE, Jones MR. Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: glucose and lipid effects. Arch Intern Med. 2008;168(18):1975–83. doi:10.1001/archinte.168.18.1975.

    Article  CAS  PubMed  Google Scholar 

  149. Fonseca VA, Rosenstock J, Wang AC, Truitt KE, Jones MR. Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care. 2008;31(8):1479–84. doi:10.2337/dc08-0283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Yamanashi, Y., Takada, T., Suzuki, H. (2017). Bile Acid as Therapeutic Agents. In: Tazuma, S., Takikawa, H. (eds) Bile Acids in Gastroenterology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56062-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56062-3_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56060-9

  • Online ISBN: 978-4-431-56062-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics