Skip to main content

Physiology of Acetobacter and Komagataeibacter spp.: Acetic Acid Resistance Mechanism in Acetic Acid Fermentation

  • Chapter
  • First Online:
Acetic Acid Bacteria

Abstract

Acetic acid bacteria (AAB) are obligate aerobes that belong to the α-Proteobacteria and are used for industrial vinegar production because of their remarkable ability to oxidize ethanol by alcohol dehydrogenase, aldehyde dehydrogenase, and terminal oxidase of respiratory chain members on the cell membrane. Acetic acid tolerance is a crucial ability allowing AAB to stably produce large amounts of acetic acid.

Several molecular machineries responsible for acetic acid tolerance in AAB have been reported, including (1) prevention of acetic acid influx into the cell, (2) acetic acid assimilation, (3) acetic acid efflux by transporter or pump, and (4) protection of cytoplasmic proteins against denaturing by general stress proteins. (1) AAB optimize the lipid component proportion of the membrane and by further forming polysaccharide on the surface of the cells to prevent the influx of acetic acid. (2) AAB acquired the ability to convert the intracellular acetic acid in usable energy effectively via the alternative TCA cycle. (3) AAB possess two types of discharging intracellular acetic acid systems, one of which is a putative ABC transporter, and the other is an efflux pump driven by a proton motive force. (4) AAB adapt to the environmental changes in cells by inducing chaperones that stabilize the structure of proteins from acidification of the cell inside, and by synthesizing the enzymes which decompose reactive oxygen species (ROS) to maintain the intracellular environment in good condition.

Because acetic acid tolerance in AAB is conferred by several mechanisms, these mechanisms of acetic acid tolerance are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi O, Miyagawa E, Shinagawa E, Matsushita K, Ameyama M (1978) Purification and properties of particulate alcohol dehydrogenase from Acetobacter aceti. Agric Biol Chem 42:2331–2340

    CAS  Google Scholar 

  • Ameyama M, Osada K, Shinagawa E, Matsushita K, Adachi O (1981) Purification and characterization of aldehyde dehydrogenase of Acetobacter aceti. Agric Biol Chem 45:1889–1890

    CAS  Google Scholar 

  • Axe DD, Bailey JE (1995) Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol Bioeng 47:8–19

    Article  CAS  PubMed  Google Scholar 

  • Entani E, Asai M, Tsujihata S, Tsukamoto Y, Ohta M (1997) Antibacterial action of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7. Part 1: Examination of bacteriostatic and bactericidal activities. Jpn Assoc Infect Dis 71:443–450

    CAS  Google Scholar 

  • Francois JA, Starks CM, Sivanuntakorn S, Jiang H, Ransome AE, Nam J-W, Constantine CZ, Kappock TJ (2006) Structure of a NADH-insensitive hexameric citrate synthase that resists acid inactivation. Biochemistry 45:13487–13499

    Article  CAS  PubMed  Google Scholar 

  • Fukaya M, Takemura H, Okumura H, Kawamura Y, Horinouchi S, Beppu T (1990) Cloning of genes responsible for acetic acid resistance in Acetobacter aceti. J Bacteriol 172:2096–2104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukaya M, Takemura H, Tayama K, Okumura H, Kawamura Y, Horinouchi S, Beppu T (1993a) The aarC gene responsible for acetic acid assimilation confers acetic acid resistance on Acetobacter aceti. J Ferment Bioeng 76:270–275

    Article  CAS  Google Scholar 

  • Fukaya M, Tayama K, Tamaki T, Ebisuya H, Okumura H, Kawamura Y, Horinouchi S, Beppu T (1993b) Characterization of cytochrome a 1 that functions as a ubiquinol oxidase in Acetobacter aceti. J Bacteriol 175:4307–4314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goto H, Masuko M, Ohnishi M, Tsukamoto Y (2000) Comparative analysis of phospholipids for two acetobacters producing acetic acid at high and moderate concentrations. J Jpn Oil Chem Soc 49:349–355

    Article  CAS  Google Scholar 

  • Hanada T, Kashima Y, Kosugi A, Koizumi Y, Yanagida F, Udaka S (2001) A gene encoding phosphatidylethanolamine N-methyltransferase from Acetobacter aceti and some properties of its disruptant. Biosci Biotechnol Biochem 65:2741–2748

    Article  CAS  PubMed  Google Scholar 

  • Higashide T, Okumura H, Kawamura Y, Teranishi K, Hisamatsu M (1996) Membrane components and cell form of Acetobacter polyoxogenes (vinegar producing strain) under high acidic conditions. Nippon Shokuhin Kagaku Kaishi 43:117–123

    Article  CAS  Google Scholar 

  • Ishii S, Kishi M, Yamagami K, Okada S, Abe K, Misaka T (2012) The use of mammalian cultured cells loaded with a fluorescent dye shows specific membrane penetration of undissociated acetic acid. Biosci Biotechnol Biochem 76:523–529

    Article  CAS  PubMed  Google Scholar 

  • Kanchanarach W, Theeragool G, Inoue T, Yakushi T, Adachi O, Matsushita K (2010) Acetic acid fermentation of Acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation. Biosci Biotechnol Biochem 74:1591–1597

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Shinagawa E, Adachi O, Ameyama M (1990) Cytochrome a 1 of Acetobacter aceti is a cytochrome ba functioning as ubiquinol oxidase. Proc Natl Acad Sci USA 87:9863–9867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita K, Ebisuya H, Ameyama M, Adachi O (1992a) Change of the terminal oxidase from cytochrome a 1 in shaking cultures to cytochrome o in static cultures of Acetobacter aceti. J Bacteriol 174:122–129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita K, Nakamura Y, Shinagawa E, Ameyama M, Adachi O (1992b) Ethanol oxidase respiratory chain of acetic acid bacteria. Reactivity with ubiquinone of pyrroloquinoline quinine-dependent alcohol dehydrogenases purified from Acetobacter aceti and Gluconobacter suboxydans. Biosci Biotechnol Biochem 56:304–310

    Article  CAS  Google Scholar 

  • Matsushita K, Inoue T, Adachi O, Toyama H (2005) Acetobacter aceti possesses a proton motive force-dependent efflux system for acetic acid. J Bacteriol 187:4346–4352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez C, Salas JA (2001) The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms. Res Microbiol 152:341–350

    Article  CAS  PubMed  Google Scholar 

  • Mullins EA, Francois JA, Kappock TJ (2008) A specialized citric acid cycle requiring succinyl-coenzyme a (CoA):acetate CoA-trasferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. J Bacteriol 190:4933–4940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano S, Fukaya M (2008) Analysis of proteins responsive to acetic acid in Acetobacter. Molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. Int J Food Microbiol 125:54–59

    Article  CAS  PubMed  Google Scholar 

  • Nakano S, Fukaya M, Horinouchi S (2004) Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti. FEMS Microbiol Lett 235:315–322

    Article  CAS  PubMed  Google Scholar 

  • Nakano S, Fukaya M, Horinouchi S (2006) Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti. Appl Environ Microbiol 72:497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto-Kainuma A, Yan W, Kadono S, Tayama K, Koizumi Y, Yanagida F (2002) Cloning and characterization of groESL operon in Acetobacter aceti. J Biosci Bioeng 94:140–147

    Article  CAS  PubMed  Google Scholar 

  • Okamoto-Kainuma A, Ehata Y, Ikeda M, Osono T, Ishikawa M, Kaga T, Koizumi Y (2008) Hydrogen peroxide resistance of Acetobacter pasteurianus NBR3283 and its relationship to acetic acid fermentation. Biosci Biotechnol Biochem 72:2526–2534

    Article  CAS  PubMed  Google Scholar 

  • Okamoto-Kainuma A, Ishikawa M, Nakamura H, Fukazawa S, Tanaka N, Yamagami K, Koizumi Y (2011) Characterization of rpoH in Acetobacter pasteurianus NBR3283. J Biosci Bioeng 111:429–432

    Article  CAS  PubMed  Google Scholar 

  • Russel JB (1992) Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J Appl Bacteriol 73:363–370

    Article  Google Scholar 

  • Sievers M, Stockli M, Teuber M (1997) Purification and properties of citrate synthase from Acetobacter europaeus. FEMS Microbiol Lett 146:53–58

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Nakano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Nakano, S., Ebisuya, H. (2016). Physiology of Acetobacter and Komagataeibacter spp.: Acetic Acid Resistance Mechanism in Acetic Acid Fermentation. In: Matsushita, K., Toyama, H., Tonouchi, N., Okamoto-Kainuma, A. (eds) Acetic Acid Bacteria. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55933-7_10

Download citation

Publish with us

Policies and ethics