Skip to main content

Abstract

Since the dose delivery pattern is different between intensity-modulated radiotherapy (IMRT) and conventional radiation, radiobiological assessment of the physical dose delivered by IMRT is considered necessary. In IMRT, the daily dose is usually given intermittently over a time longer than that used in conventional radiotherapy. During prolonged radiation delivery, sublethal damage repair takes place, leading to the decreased effect of radiation. This phenomenon is universarily observed in vitro. In in vivo tumors, however, this decrease in effect may be counterbalanced by rapid reoxygenation; we demonstrated it in murine tumors. Studies on reoxygenation in human tumors are warranted to better evaluate the influence of prolonged radiation delivery. Another issue related to high-dose-per-fraction intensity-modulated stereotactic radiotherapy is the mathematical model for dose evaluation and conversion. Many clinicians use the linear–quadratic (LQ) model and biologically effective dose (BED) to estimate the effects of various radiation schedules, but it has been suggested that the LQ model is not applicable to high doses per fraction. Recent experimental studies verified the inadequacy of the LQ model in converting hypofractionated doses into single doses. The LQ model overestimates the effect of high fractional doses of radiation. BED is particularly incorrect when it is used for tumor responses in vivo, since it does not take reoxygenation into account. For normal tissue responses, improved models have been proposed, but, for in vivo tumor responses, the currently available models are not satisfactory, and better ones should be proposed in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takemoto S, Shibamoto Y, Ayakawa S et al (2012) Treatment and prognosis of patients with late rectal bleeding after intensity-modulated radiation therapy for prostate cancer. Radiat Oncol 7:87

    Article  PubMed Central  PubMed  Google Scholar 

  2. Manabe Y, Shibamoto Y, Sugie C et al (2014) Toxicity and efficacy of three dose-fractionation regimens of intensity-modulated radiation therapy for localized prostate cancer. J Radiat Res 55(3):494–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Elkind MM, Sutton H (1960) Radiation response of mammalian cells grown in culture. I. Repair of X-ray damage in surviving Chinese hamster cells. Radiat Res 13:556–593

    Article  CAS  PubMed  Google Scholar 

  4. Elkind MM, Sutton-Gilbert H, Moses WB et al (1965) Radiation response of mammalian cells grown in culture. V. Temperature dependence of the repair of X-ray damage in surviving cells (aerobic and hypoxic). Radiat Res 25:359–376

    Article  CAS  PubMed  Google Scholar 

  5. Iuchi T, Hatano K, Narita Y et al (2006) Hypofractionated high-dose irradiation for the treatment of malignant astrocytomas using simultaneous integrated boost technique by IMRT. Int J Radiat Oncol Biol Phys 64:1317–1324

    Article  PubMed  Google Scholar 

  6. Kim MJ, Yeo SG, Kim ES et al (2013) Intensity-modulated stereotactic body radiotherapy for stage I non-small cell lung cancer. Oncol Lett 5:840–844

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Boda-Heggemann J, Mai S, Fleckenstein J et al (2013) Flattening-filter-free intensity modulated breath-hold image-guided SABR (Stereotactic ABlative Radiotherapy) can be applied in a 15-min treatment slot. Radiother Oncol 109:505–509

    Article  PubMed  Google Scholar 

  8. Kirkpatrick JP, Meyer JJ, Marks LB (2008) The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol 18:240–243

    Article  PubMed  Google Scholar 

  9. Joiner MC, Bentzen SM (2009) Fractionation: the linear-quadratic approach. In: Joiner M, van der Kogel A (eds) Basic clinical radiobiology. Hodder Arnold, London, pp 102–119

    Chapter  Google Scholar 

  10. Shibamoto Y, Otsuka S, Iwata H, Tomita N et al (2012) Radiobiological evaluation of the radiation dose as used in high-precision radiotherapy: effect of prolonged delivery time and applicability of the linear-quadratic model. J Radiat Res 53:1–9

    Article  PubMed  Google Scholar 

  11. Shibamoto Y, Ito M, Sugie C et al (2004) Recovery from sublethal damage during intermittent exposures in cultured tumor cells: implications for dose modification in radiosurgery and IMRT. Int J Radiat Oncol Biol Phys 59:1484–1490

    Article  PubMed  Google Scholar 

  12. Shibamoto Y, Yukawa Y, Tsutsui K et al (1986) Variation in the hypoxic fraction among mouse tumors of different types, sizes, and sites. Jpn J Cancer Res 77:908–915

    CAS  PubMed  Google Scholar 

  13. Shibamoto Y, Streffer C, Fuhrmann C et al (1991) Tumor radiosensitivity prediction by the cytokinesis-block micronucleus assay. Radiat Res 128:293–300

    Article  CAS  PubMed  Google Scholar 

  14. Shibamoto Y, Streffer C, Sasai K et al (1992) Radiosensitization efficacy of KU-2285, RP-170 and etanidazole at low radiation doses: assessment by in vitro cytokinesis-block micronucleus assay. Int J Radiat Biol 61:473–478

    Article  CAS  PubMed  Google Scholar 

  15. Ogino H, Shibamoto Y, Sugie C et al (2005) Biological effects of intermittent radiation in cultured tumor cells: influence of fraction number and dose per fraction. J Radiat Res 46:401–406

    Article  PubMed  Google Scholar 

  16. Sugie C, Shibamoto Y, Ito M et al (2006) The radiobiological effect of intermittent radiation exposure in murine tumors. Int J Radiat Oncol Biol Phys 64:619–624

    Article  PubMed  Google Scholar 

  17. Tomita N, Shibamoto Y, Ito M et al (2008) Biological effect of intermittent radiation exposure in vivo: recovery from sublethal damage versus reoxygenation. Radiother Oncol 86:369–374

    Article  CAS  PubMed  Google Scholar 

  18. Shibamoto Y, Sasai K, Abe M et al (1987) The radiation response of SCCVII tumor cells in C3H/He mice varies with the irradiation conditions. Radiat Res 109:352–354

    Article  CAS  PubMed  Google Scholar 

  19. Benedict SH, Lin PS, Zwicker RD et al (1997) The biological effectiveness of intermittent irradiation as a function of overall treatment time: development of correction factors for linac-based stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 37:765–769

    Article  CAS  PubMed  Google Scholar 

  20. Mu X, Löfroth PO, Karlsson M et al (2003) The effect of fraction time in intensity modulated radiotherapy: theoretical and experimental evaluation of an optimisation problem. Radiother Oncol 68:181–187

    Article  PubMed  Google Scholar 

  21. Zheng XK, Chen LH, Wang WJ et al (2010) Impact of prolonged fraction delivery times simulating IMRT on cultured nasopharyngeal carcinoma cell killing. Int J Radiat Oncol Biol Phys 78:1541–1547

    Article  PubMed  Google Scholar 

  22. Moiseenko V, Banáth JP, Duzenli C et al (2008) Effect of prolonging radiation delivery time on retention of gammaH2AX. Radiat Oncol 3:18

    Article  PubMed Central  PubMed  Google Scholar 

  23. Moiseenko V, Duzenli C, Durand RE et al (2007) In vitro study of cell survival following dynamic MLC intensity-modulated radiation dose delivery. Med Phys 34:1514–1520

    Article  PubMed  Google Scholar 

  24. Zheng XK, Chen LH, Yan X et al (2005) Impact of prolonged fraction dose-delivery time modeling intensity-modulated radiation therapy on hepatocellular carcinoma cell killing. World J Gastroenterol 11:1452–1456

    Article  PubMed Central  PubMed  Google Scholar 

  25. Wang X, Xiong XP, Lu J et al (2011) The in vivo study on the radiobiologic effect of prolonged delivery time to tumor control in C57BL mice implanted with Lewis lung cancer. Radiat Oncol 6:4

    Article  PubMed Central  PubMed  Google Scholar 

  26. Jiang L, Xiong XP, Hu CS et al (2013) In vitro and in vivo studies on radiobiological effects of prolonged fraction delivery time in A549 cells. J Radiat Res 54:230–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Withers HR, Thames HD Jr, Peters LJ et al (1983) A new isoeffect curve for change in dose per fraction. Radiother Oncol 1:187–191

    Article  CAS  PubMed  Google Scholar 

  28. Wulf J, Baier K, Mueller G et al (2005) Dose-response in stereotactic irradiation of lung tumors. Radiother Oncol 77:83–87

    Article  PubMed  Google Scholar 

  29. Milano MT, Katz AW, Schell MC et al (2008) Descriptive analysis of oligometastatic lesions treated with curative-intent stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 72:1516–1522

    Article  PubMed  Google Scholar 

  30. Onishi H, Shirato H, Nagata Y et al (2011) Stereotactic body radiotherapy (SBRT) for operable stage I non-small-cell lung cancer: can SBRT be comparable to surgery? Int J Radiat Oncol Biol Phys 81:1352–1358

    Article  PubMed  Google Scholar 

  31. Takeda A, Sanuki N, Kunieda E et al (2009) Stereotactic body radiotherapy for primary lung cancer at a dose of 50 Gy total in five fractions to the periphery of the planning target volume calculated using a superposition algorithm. Int J Radiat Oncol Biol Phys 73:442–448

    Article  PubMed  Google Scholar 

  32. Guckenberger M, Klement RJ, Allgaeuer M et al (2013) Applicability of the linear-quadratic formalism for modeling local tumor control probability in high dose per fraction stereotactic body radiotherapy for early stage non-small cell lung cancer. Radiother Oncol 109:13–20

    Article  PubMed  Google Scholar 

  33. Brenner DJ (2008) The linear-quadratic model is an appropriate methodology for determining iso-effective doses at large doses per fraction. Semin Radiat Oncol 18:234–239

    Article  PubMed Central  PubMed  Google Scholar 

  34. Puck TT, Marcus PI (1956) Action of X-rays on mammalian cells. J Exp Med 103:653–666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Garcia LM, Leblanc J, Wilkins D et al (2006) Fitting the linear-quadratic model to detailed data sets for different dose ranges. Phys Med Biol 51:2813–2823

    Article  CAS  PubMed  Google Scholar 

  36. Iwata H, Shibamoto Y, Murata R et al (2009) Estimation of errors associated with use of linear-quadratic formalism for evaluation of biologic equivalence between single and hypofractionated radiation doses: an in vitro study. Int J Radiat Oncol Biol Phys 75:482–488

    Article  PubMed  Google Scholar 

  37. Shibamoto Y, Kitakabu Y, Murata R et al (1994) Reoxygenation in the SCCVII tumor after KU-2285 sensitization plus single or fractionated irradiation. Int J Radiat Oncol Biol Phys 29:583–586

    Article  CAS  PubMed  Google Scholar 

  38. Murata R, Shibamoto Y, Sasai K et al (1996) Reoxygenation after single irradiation in rodent tumors of different types and sizes. Int J Radiat Oncol Biol Phys 34:859–865

    Article  CAS  PubMed  Google Scholar 

  39. Otsuka S, Shibamoto Y, Iwata H et al (2011) Compatibility of the linear-quadratic formalism and biologically effective dose concept to high-dose-per-fraction irradiation in a murine tumor. Int J Radiat Oncol Biol Phys 81:1538–1543

    Article  PubMed  Google Scholar 

  40. Douglas BG, Fowler JF (1976) The effect of multiple small doses of x rays on skin reactions in the mouse and a basic interpretation. Radiat Res 66:401–426

    Article  CAS  PubMed  Google Scholar 

  41. van der Kogel AJ (1985) Chronic effects of neutrons and charged particles on spinal cord, lung, and rectum. Radiat Res 8(Suppl):S208–S216

    Google Scholar 

  42. Peck JW, Gibbs FA (1994) Mechanical assay of consequential and primary late radiation effects in murine small intestine: alpha/beta analysis. Radiat Res 138:272–281

    Article  CAS  PubMed  Google Scholar 

  43. Fowler JF (1984) Total doses in fractionated radiotherapy – implications of new radiobiological data. Int J Radiat Biol 46:103–120

    Article  CAS  Google Scholar 

  44. Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62:679–694

    Article  CAS  PubMed  Google Scholar 

  45. Astrahan M (2008) Some implications of linear-quadratic-linear radiation dose-response with regard to hypofractionation. Med Phys 35:4161–4172

    Article  PubMed  Google Scholar 

  46. Fowler JF, Tomé WA, Fenwick JD et al (2004) A challenge to traditional radiation oncology. Int J Radiat Oncol Biol Phys 60:1241–1256

    Article  PubMed  Google Scholar 

  47. Borst GR, Ishikawa M, Nijkamp J et al (2010) Radiation pneumonitis after hypofractionated radiotherapy: evaluation of the LQ(L) model and different dose parameters. Int J Radiat Oncol Biol Phys 77:1596–1603

    Article  PubMed  Google Scholar 

  48. Park C, Papiez L, Zhang S et al (2008) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 70:847–852

    Article  PubMed  Google Scholar 

  49. Guerrero M, Carlone M (2010) Mechanistic formulation of a linear-quadratic-linear (LQL) model: split-dose experiments and exponentially decaying sources. Med Phys 37:4173–4181

    Article  PubMed  Google Scholar 

  50. Guerrero M, Li XA (2004) Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol 49:4825–4835

    Article  CAS  PubMed  Google Scholar 

  51. Wang JZ, Huang Z, Lo SS et al (2010) A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy. Sci Transl Med 2:39ra48

    Article  PubMed  Google Scholar 

  52. Butts JJ, Katz R (1967) Theory of RBE for heavy ion bombardment of dry enzymes and viruses. Radiat Res 30:855–871

    Article  CAS  PubMed  Google Scholar 

  53. Curtis SB (1986) Lethal and potentially lethal lesions induced by radiation – a unified repair model. Radiat Res 106:252–270

    Article  CAS  PubMed  Google Scholar 

  54. Iwata H, Matsufuji N, Toshito T et al (2013) Compatibility of the repairable-conditionally repairable, multi-target and linear-quadratic models in converting hypofractionated radiation doses to single doses. J Radiat Res 54:367–373

    Article  PubMed Central  PubMed  Google Scholar 

  55. Scott OC (1990) Mathematical models of repopulation and reoxygenation in radiotherapy. Br J Radiol 63:821–823

    Article  CAS  PubMed  Google Scholar 

  56. Nakamura K, Brahme A (1999) Evaluation of fractionation regimen in stereotactic radiotherapy using a mathematical model of repopulation and reoxygenation. Radiat Med 17:219–225

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology (20591501, 23591846).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuta Shibamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Shibamoto, Y., Sugie, C., Ogino, H., Tomita, N. (2015). Radiobiology for IMRT. In: Nishimura, Y., Komaki, R. (eds) Intensity-Modulated Radiation Therapy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55486-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55486-8_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55485-1

  • Online ISBN: 978-4-431-55486-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics