Skip to main content

Development and Regeneration of the Oral Cavity and the Pharynx

  • Chapter
Regenerative Medicine in Otolaryngology

Abstract

The oral cavity and pharynx are anatomical spaces defined by soft and hard tissue structures. These structures act as an aerodigestive tract, and the shape of these spaces changes during speech, swallowing, and respiration. Surgical resection of tumors in oropharynx causes tissue defects and various problems, such as disturbance of mastication, deglutition, and articulation, leading to a decreased quality of life. Thus, there is a need for a reconstructive or regenerative approach to restore lost tissues and prevent postoperative complications. In oropharynx, the reconstructive approach is a mainstay of treating surgical defects so far, and there are few references in the literature regarding the regenerative approach. The reconstructive approach using free flaps has advantages in immediate covering of tissue defects without xenobiotic rejection. However, there exist problems such as the stretching ability in free flaps due to the difference of tissue characteristics. Thus, the regenerative approach should also be evolving in oropharynx.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. German, Rebecca Z., Palmer, Jeffrey B. Anatomy and development of oral cavity and pharynx. GI Motility online 2006. doi:10.1038/gimo5

  2. Drake RL, Vogl W, Mitchell AWM, Tibbitts R, Richardson P, Horn A, Gray H. Gray’s anatomy for students. Philadelphia: Churchill Livingstone/Elsevier; 2010. 1825–1861.

    Google Scholar 

  3. Moore KL, Dalley AF, Agur AMR. Clinically oriented anatomy. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2010.

    Google Scholar 

  4. Snell RS. Clinical anatomy. Philadelphia: Lippincott Williams & Wilkins; 2004.

    Google Scholar 

  5. Sadler TW. Langman’s medical embryology. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  6. Moore KL, Persaud TVN. The developing human: clinically oriented embryology. Philadelphia: Saunders; 2003.

    Google Scholar 

  7. Larsen WJ. Human embryology. New York: Churchill Livingstone; 2001.

    Google Scholar 

  8. Wong CH, Wei FC. Microsurgical free flap in head and neck reconstruction. Head Neck. 2010;32:1236–45.

    Article  PubMed  Google Scholar 

  9. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  CAS  PubMed  Google Scholar 

  10. De Crescenzo G, Hinck CS, Shu Z, et al. Three key residues underlie the differential affinity of the TGFbeta isoforms for the TGFbeta type II receptor. J Mol Biol. 2006;355:47–62.

    Article  PubMed  Google Scholar 

  11. Whitby DJ, Ferguson MW. Immunohistochemical localization of growth factors in fetal wound healing. Dev Biol. 1991;147:207–15.

    Article  CAS  PubMed  Google Scholar 

  12. Cowin AJ, Holmes TM, Brosnan P, Ferguson MW. Expression of TGF-beta and its receptors in murine fetal and adult dermal wounds. Eur J Dermatol. 2001;11:424–31.

    CAS  PubMed  Google Scholar 

  13. Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci. 1995;108(Pt 3):985–1002.

    CAS  PubMed  Google Scholar 

  14. Ferguson MW, O’Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci. 2004;359:839–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Schrementi ME, Ferreira AM, Zender C, DiPietro LA. Site-specific production of TGF-beta in oral mucosal and cutaneous wounds. Wound Repair Regen. 2008;16:80–6.

    Article  PubMed  Google Scholar 

  16. Ohno S, Hirano S, Kanemaru S, et al. Prevention of buccal mucosa scarring with transforming growth factor β3. Laryngoscope. 2011;121:1404–9.

    Google Scholar 

  17. Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242:27–33.

    Article  CAS  PubMed  Google Scholar 

  18. Ohno S, Hirano S, Kanemaru S, et al. Transforming growth factor β3 for the prevention of vocal fold scarring. Laryngoscope. 2012;122:583–9.

    Google Scholar 

  19. Chang Z, Kishimoto Y, Hasan A, Welham NV. TGF-β3 modulates the inflammatory environment and reduces scar formation following vocal fold mucosal injury in rats. Dis Model Mech. 2014;7:83–91.

    Google Scholar 

  20. Fujisawa K, Miyamoto Y, Nagayama M. Basic fibroblast growth factor and epidermal growth factor reverse impaired ulcer healing of the rabbit oral mucosa. J Oral Pathol Med. 2003;32:358–66.

    Article  CAS  PubMed  Google Scholar 

  21. Ohshima M, Sato M, Ishikawa M, Maeno M, Otsuka K. Physiologic levels of epidermal growth factor in saliva stimulate cell migration of an oral epithelial cell line, HO-1-N-1. Eur J Oral Sci. 2002;110:130–6.

    Article  CAS  PubMed  Google Scholar 

  22. Karvinen S, Pasonen-Seppanen S, Hyttinen JM, et al. Keratinocyte growth factor stimulates migration and hyaluronan synthesis in the epidermis by activation of keratinocyte hyaluronan synthases 2 and 3. J Biol Chem. 2003;278:49495–504.

    Article  CAS  PubMed  Google Scholar 

  23. Okazaki M, Yoshimura K, Uchida G, Harii K. Elevated expression of hepatocyte and keratinocyte growth factor in cultured buccal-mucosa-derived fibroblasts compared with normal-skin-derived fibroblasts. J Dermatol Sci. 2002;30:108–15.

    Article  CAS  PubMed  Google Scholar 

  24. Blaimauer K, Watzinger E, Erovic BM, Martinek H, Jagersberger T, Thurnher D. Effects of epidermal growth factor and keratinocyte growth factor on the growth of oropharyngeal keratinocytes in coculture with autologous fibroblasts in a three-dimensional matrix. Cells Tissues Organs. 2006;182:98–105.

    Article  CAS  PubMed  Google Scholar 

  25. Marynka-Kalmani K, Treves S, Yafee M, et al. The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells. 2010;28:984–95.

    CAS  PubMed  Google Scholar 

  26. Hirano S, Bless DM, Nagai H, et al. Growth factor therapy for vocal fold scarring in a canine model. Ann Otol Rhinol Laryngol. 2004;113:777–85.

    Article  PubMed  Google Scholar 

  27. Matsumoto K, Nakamura T. Hepatocyte growth factor (HGF) as a tissue organizer for organogenesis and regeneration. Biochem Biophys Res Commun. 1997;239:639–44.

    Article  CAS  PubMed  Google Scholar 

  28. Ohno S, Hirano S, Kanemaru S, et al. Implantation of an atelocollagen sponge with autologous bone marrow-derived mesenchymal stromal cells for treatment of vocal fold scarring in a canine model. Ann Otol Rhinol Laryngol. 2011;120:401–8.

    Article  PubMed  Google Scholar 

  29. Ohno S, Hirano S, Kanemaru S, et al. Role of circulating MSCs in vocal fold wound healing. Laryngoscope. 2012;122:2503–10.

    Article  PubMed  Google Scholar 

  30. Lee RH, Kim B, Choi I, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004;14:311–24.

    Article  CAS  PubMed  Google Scholar 

  31. Lee BJ, Wang SG, Lee JC, et al. The prevention of vocal fold scarring using autologous adipose tissue-derived stromal cells. Cells Tissues Organs. 2006;184:198–204.

    Article  PubMed  Google Scholar 

  32. Kojima T, Kanemaru S, Hirano S, et al. Regeneration of radiation damaged salivary glands with adipose-derived stromal cells. Laryngoscope. 2011;121:1864–9.

    PubMed  Google Scholar 

  33. Ohki T, Yamato M, Ota M, et al. Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology. 2012;143:582–8.e1–2.

    Article  PubMed  Google Scholar 

  34. Koide M, Osaki K, Konishi J, et al. A new type of biomaterial for artificial skin: dehydrothermally cross-linked composites of fibrillar and denatured collagens. J Biomed Mater Res. 1993;27:79–87.

    Article  CAS  PubMed  Google Scholar 

  35. Bessho K, Murakami K, Iizuka T. The use of a new bilayer artificial dermis for vestibular extension. Br J Oral Maxillofac Surg. 1998;36:457–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ohno S, Hirano S, Tateya I, et al. Atelocollagen sponge as a stem cell implantation scaffold for the treatment of scarred vocal folds. Ann Otol Rhinol Laryngol. 2009;118:805–10.

    PubMed  Google Scholar 

  37. Yonezawa H, Yamada S, Yanamoto S, Yoshitomi I, Kawasaki G, Umeda M. Effect of polyglycolic acid sheets with fibrin glue (MCFP technique) on the healing of wounds after partial resection of the border of the tongue in rabbits: a preliminary study. Br J Oral Maxillofac Surg. 2012;50:459–63.

    Article  PubMed  Google Scholar 

  38. Seo K, Inada Y, Terumitsu M, et al. One year outcome of damaged lingual nerve repair using a PGA-collagen tube: a case report. J Oral Maxillofac Surg. 2008;66:1481–4.

    Article  PubMed  Google Scholar 

  39. Manome Y, Kobayashi T, Mori M, et al. Local delivery of doxorubicin for malignant glioma by a biodegradable PLGA polymer sheet. Anticancer Res. 2006;26:3317–26.

    CAS  PubMed  Google Scholar 

  40. Yoshioka I, Saiki Y, Sakuma K, et al. Bioabsorbable gelatin sheets latticed with polyglycolic acid can eliminate pericardial adhesion. Ann Thorac Surg. 2007;84:864–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Ohno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hiwatashi, N., Ohno, S. (2015). Development and Regeneration of the Oral Cavity and the Pharynx. In: Ito, J. (eds) Regenerative Medicine in Otolaryngology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54856-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54856-0_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54855-3

  • Online ISBN: 978-4-431-54856-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics