Skip to main content

Troponin: Structure, Function and Dysfunction

  • Conference paper
Regulatory Mechanisms of Striated Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 592))

Abstract

A Ca2+-sensitizing protein factor first isolated from minced muscle showed some similarity to the previously found tropomyosin in amino acid composition and was thus considered to be a native form of tropomyosin (Bailey, 1946; 1948; Ebashi, 1963; Ebashi and Ebashi, 1964). In 1965, however, a new protein was found in this protein factor in addition to tropomyosin and named troponin (Ebashi and Kodama, 1965). The discovery of troponin triggered a new era of the molecular biology of the regulation of muscle contraction. Troponin was shown to be the Ca2+-receptive protein for the Ca2+-sensitive contraction in striated muscle. In the absence of Ca2+, troponin in association with tropomyosin suppresses the contractile interaction between myosin and actin, and this suppression is removed by an action of Ca2+ on troponin to activate the contraction (Ebashi et al., 1968). An electron microscopic study revealed that troponin is distributed along the thin filament at regular intervals of about 40 nm, and this finding led to the construction of a model of thin filament as an ordered assembly of troponin, tropomyosin and actin (Ohtsuki et al., 1967; Ebashi et al., 1969). By these studies, the molecular basis of the Ca2+ -regulation of muscle contraction was established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.7. References

  • Ahmad, F., Seidman, J. G., and Seidman, C. E., 2005, The genetic basis for cardiac remodeling, Annu. Rev. Genomics Hum. Genet. 6:185–216.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, K., 1946, Tropomyosin: a new asymmetric protein component of muscle, Nature (London) 157:368–369.

    CAS  Google Scholar 

  • Bailey, K., 1948, Tropomyosin: a new asymmetric protein component of the muscle fibril, Biochem. J. 43:271–279.

    PubMed  CAS  Google Scholar 

  • Ebashi, S., 1963, Third component participating in the superprecipitation of “natural actomyosin”, Nature (London), 200:1010.

    Article  CAS  Google Scholar 

  • Ebashi, S., 1972, Troponin and its components, J. Biochem. 72:787–790.

    PubMed  CAS  Google Scholar 

  • Ebashi, S., 1974, Regulatory mechanism of muscle contraction with special reference to the Ca-troponin-tropomyosin system, Essays Biochem. 10:1–36.

    PubMed  CAS  Google Scholar 

  • Ebashi, S., and Ebashi. F., 1964, A new protein component participating in the superprecipitation of myosin B, J. Biochem. 55:604–613.

    PubMed  CAS  Google Scholar 

  • Ebashi, S., Endo, M., and Ohtsuki, I., 1969, Control of muscle contraction, Q. Rev. Biophys. 2:351–384.

    Article  PubMed  CAS  Google Scholar 

  • Ebashi, S., and Kodama, A., 1965, A new protein factor promoting aggregation of tropomyosin, J. Biochem. 58:107–108.

    PubMed  CAS  Google Scholar 

  • Ebashi, S., Kodama, A., and Ebashi, F., 1968, Troponin 1. Preparation and physiological function, J. Biochem. 64:465–477.

    PubMed  CAS  Google Scholar 

  • Fatkin, D., and Graham, R. M. 2002, Molecular mechanism of inherited cardiomyopathies, Physiol. Rev. 82:945–980.

    PubMed  CAS  Google Scholar 

  • Gomes, A. V., Harada, K., and Potter, J. D., 2005, A mutation in the N-terminal of troponin I that is associated with hypertrophic cardiomyopathy affects the Ca2+-sensitivity, phosphorylation kinetics and proteolytic susceptibility of troponin. J. Mol. Cell. Cardiol. 39:754–765.

    Article  PubMed  CAS  Google Scholar 

  • Greaser, M. L., and Gergely, J., 1971, Reconstitution of troponin activity from three protein components, J. Biol. Chem. 246:4226–4233.

    PubMed  CAS  Google Scholar 

  • Harada, K., and Potter, J. D., 2004, Familial hypertrophic cardiomyopathy mutations from different functional regions of troponin T result in different effects on the pH-and Ca2+-sensitivity of cardiac muscle contraction. J. Biol. Chem. 279:14488–14495.

    Article  PubMed  CAS  Google Scholar 

  • Hartshorne, D. J., and Mueller, H., 1968, Fractionation of troponin into two distinct proteins, Biochem. Biophys. Res. Commun. 31:647–653.

    Article  PubMed  CAS  Google Scholar 

  • Hatakenaka, M., and Ohtsuki, I., 1991, Replacement of three troponin components with cardiac troponin components within single glycerinated skeletal muscle fibers, Biochem. Biophys. Res. Commun. 181:1022–1027.

    Article  PubMed  CAS  Google Scholar 

  • Hatakenaka, M., and Ohtsuki, I., 1992, Effect of removal and reconstitution of troponins C and I on the Ca2+-activated tension development of single glycerinated rabbit skeletal muscle fibers, Eur. J. Biochem. 205:985–993.

    Article  PubMed  CAS  Google Scholar 

  • Hinkle, A., and Tobacman, L. S., 2003, Folding and function of troponin tail domain. Effects of cardiomyopathic troponin T mutations, J. Biol. Chem. 278:506–513.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, B., Schmidt-Traub, H., Perrot, A., Osterziel, K. J., and Gessner R., 2001, First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy, Hum. Mutat. 17:524.

    Article  Google Scholar 

  • Jackson, P., Amphlett, G. W., and Perry, S. V. 1975, The primary structure of troponin T and the interaction with tropomyosin, Biochem. J. 151:85–97.

    PubMed  CAS  Google Scholar 

  • Kamisago, M., Sharma, S. D., DePelma, S. R., Solomon, S., Sharma, P., McDonough, B., Smool, L., Mullen, M. P., Woolf, P. K., Wigle, E. D., and Seidman, C. E., 2000, Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy, N. Engl. J. Med. 343:1688–1696.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, A., Hara, H., Park, J. E., Nishi, H., Satoh, M., Takahashi, M., Hiroi, S., Sasaoka, T., Ohbuchi, N., Nakamura, T., Koyanagi, T., Hwang, T. H., Choo, J. A., Chung, K. S., Hasegawa, A., Nagai, R., Okazaki, O., Nakamura, H., Matsuzaki, M., Sakamoto, T., Toshima, H., Koga, Y., Imaizumi, Y., and Sasazuki, T., 1997, Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy, Nat. Genet. 16:379–382.

    Article  PubMed  CAS  Google Scholar 

  • Knollman, B. C., Kirchhof, P., Sirenko, S. G., Degan, H., Greene, A. E., Schober, T., Mackow, J. C., Fabritz, L., Potter, J. D., and Morad, M., 2003, Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling, Circ. Res. 92:428–436.

    Article  CAS  Google Scholar 

  • Knollman, B. C., and Potter, J. D., 2001, Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy, Trends Cardiovasc. Med. 11:206–212.

    Article  Google Scholar 

  • Li, D., Czernuszewicz G. Z., Gonzalez, O., Tapscott, T., Karibe, A., Durand, J. B., Brugada, R., Hill, R., Gregoritch, J. M., Anderson, J. L., Quinones M., Bachinski, L. L., and Roberts, R., 2001, Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy, Circulation 104:2188–2193.

    PubMed  CAS  Google Scholar 

  • Lu, Q-W., Morimoto, S., Harada, K., Du, C-K., Takahashi-Yanaga, F., Miwa, Y., Sasaguri, T., and Ohtsuki, I., 2003, Cardiac troponin T mutation found in dilated cardiomyopathy stabilizes the troponin T-tropomyosin interaction and causes Ca2+ desensitization, J. Mol. Cell. Cardiol. 35:1421–1427.

    Article  PubMed  CAS  Google Scholar 

  • Mirza, M., Marston, S., Willott, R., Ashley, C., Mogensen, J., McKenna, W., Robinson, P., Redwood, C., and Watkins, H., 2005, Dilated cardiomyopathy mutations in three thin filament regulatory proteins results in a common functional phenotype, J. Biol. Chem. 280:28498–28506.

    Article  PubMed  CAS  Google Scholar 

  • Mogensen, J., Kubo, T., Duque, M., Uribe, W., Shaw, A., Murphy, R., Gimeno, J. R., Elliott, P., and Mckenna, W. J., 2003a, Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations, J. Clin. Invest. 111:209–216.

    Article  PubMed  CAS  Google Scholar 

  • Mogensen, J., Murphy, R. T., Shaw, A., Bahl, A., Elliott, P. M., and McKenna, W. J., 2003b, Cardiac troponin C, and T mutations in 238 patients with idiopathic dilated cardiomyopathy; Prevalence, clinical features and impact on the troponin complex, Circulation 108:IV-50.

    Google Scholar 

  • Morimoto, S., Du, C.-K., Ohta, M., Lu, Q.-W., Harada, K., Nishii, K., Yamamura, K., and Ohtsuki, I., 2005, A knock-in mouse model for familial dilated cardiomyopathy caused by the mutation ΔK210 in cardiac troponin I, Biophys. J. 88(1):Part 2.480a.

    Google Scholar 

  • Morimoto, S., Lu, Q-W., Harada, K., Takahashi-Yanaga, F., Minakami, R., Ohta, M., Sasaguri, T., and Ohtsuki, I., 2002, Ca2+ desensitizing effect of a deletion mutation delta-K210 in cardiac troponin T that causes familial dilated cardiomyopathy, Proc. Natl. Acad. Sci. USA 99:913–918.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto, S., Nakaura, H., Yanaga, F., and Ohtsuki, I., 1999, Functional consequences of a carboxy terminal missense mutation Arg278Cys in human cardiac troponin T, Biochem. Biophys. Res. Commun. 261:79–82.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto, S., Yanaga, F., Minakami, R., and Ohtsuki, I., 1998, Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy, Am. J. Physiol. 275:C200–C207.

    PubMed  CAS  Google Scholar 

  • Nagano, K., and Ohtsuki, I., 1982, Prediction of approximate quaternary structure of troponin complex, Proc. Japan Acad. 58 (Ser.B):73–77.

    CAS  Google Scholar 

  • Nakaura, H., Morimoto, S., Yanaga, F., Nakata, M., Nishi, N., Imaizumi, Y., and Ohtsuki, I., 1999a, Functional changes in troponin T by a splice donor site mutation that causes hypertrophic crdiomyopathy, Am. J. Physiol. 277, C225–C232.

    PubMed  CAS  Google Scholar 

  • Nakaura, H., Yanaga, F., Ohtsuki, I., and Morimoto, S., 1999b, Effects of missense mutations Phe110Ile and Glu244Asp in human cardiac troponin T on force generation in skinned cardiac muscle fibers, J. Biochem. 126:457–460.

    PubMed  CAS  Google Scholar 

  • Ohtsuki, I., 1974, Localization of troponin in thin filament and tropomyosin paracrystal, J. Biochem. 75:753–765.

    CAS  Google Scholar 

  • Ohtsuki, I., 1975, Distribution of troponin components in the thin filament studied by immunoelectron microscopy, J. Biochem. 77:633–639.

    CAS  Google Scholar 

  • Ohtsuki, I., 1979, Molecular arrangement of troponin T in thin filament, J. Biochem. 86:491–497.

    PubMed  CAS  Google Scholar 

  • Ohtsuki, I. 1980, Functional organization the troponin-tropomyosin system, in: Muscle Contraction; Its Regulatory Mechanisms, S. Ebashi, K. Maruyama, M. Endo, eds, Jpn Sci. Soc. Press, Tokyo, Springer-Verlag, Berlin, Heidelbeng, New York, pp. 237–250.

    Google Scholar 

  • Ohtsuki, I., Maruyama, K, and Ebashi, S., 1986, Regulatory and cytoskeletal proteins of vertebrate skeletal muscle, Adv. Protein Chem. 38:1–68.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki I., Masaki, T., Nonomura, Y, and Ebashi, S. 1967, Periodic distribution of troponin along thin filament, J. Biochem. 81:817–819.

    Google Scholar 

  • Ohtsuki, I., Onoyama, Y., and Shiraishi, F., 1988, Electron microscopic study of troponin, J. Biochem. 103: 913–919.

    PubMed  CAS  Google Scholar 

  • Ohtsuki, I., and Shiraishi, F., 2002, Periodic binding of troponin C·I and troponin I to tropomyosin-actin filaments, J. Biochem. 131:739–743.

    PubMed  CAS  Google Scholar 

  • Ohtsuki, I., Shiraishi, F., Suenaga, N., Miyata, T., and Tanokura, M., 1984, 26K fragment of troponin T from rabbit skeletal muscle, J. Biochem. 95:1337–1342.

    PubMed  CAS  Google Scholar 

  • Ohtsuki, I., Yamamoto, K., and Hashimoto, K., 1981, Effect of two C-terminal side chymotryptic subfragments on the Ca2+ sensitivity of superprecipitation and ATPase activities of actomyosin, J. Biochem. 90: 259–261.

    PubMed  CAS  Google Scholar 

  • Oliveira, D. M., Nakaie, C. R., Sousa, A. D., Farah, C. S., and Reinach, C., 2000, Mapping the domain of troponin T responsible for the activation of actomyosin ATPase activity. Identification of residues involved in binding to actin, J. Biol. Chem. 275:27513–27519.

    Article  PubMed  CAS  Google Scholar 

  • Ooi, T., Mihashi, K., and Kobayashi, H., 1962, On the polymerization of tropomyosin, Arch. Biochem. Biophys. 98:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Pan, B.-S., Gordon, A. M., and Potter, J. D., 1991, Deletion of the first 45 NH2-terminal residues of rabbit skeletal troponin T strengthens binding of troponin to immobilized tropomyosin, J. Biol. Chem. 266: 12432–12438.

    PubMed  CAS  Google Scholar 

  • Pearlstone, J. R., Carpenter, M. R., Johnson, P., and Smillie, L. B., 1976, Amino-acid sequence of tropomyosin binding component of rabbit skeletal muscle troponin, Proc. Natl. Acad. Sci. USA 73: 1902–1906.

    Article  PubMed  CAS  Google Scholar 

  • Perry, S. V., 1999, Troponin I: inhibitor or facilitator, Mol. Cell. Biochem. 190:9–32.

    Article  PubMed  CAS  Google Scholar 

  • Preston, L., Lipscomb, S., Robinson, P., Watkins, H., Redwood, C., Mogensen, J., and Ashley, C., 2004, Mechanical effect of human cardiac troponin C mutation Gly159Asp in exchanged rabbit psoas fibers, Biophys. J. 86:396a.

    Google Scholar 

  • Rüegg, J. C., 1986, Calcium in Muscle Activation, Springer-Verlag, Berlin, Tokyo, pp. 165–200.

    Google Scholar 

  • Schaub, M. C., and Perry, S. V., 1969, The relaxing protein system of striated muscle, Biochem. J. 1155: 903–1004.

    Google Scholar 

  • Shiraishi, F., Morimoto, S., Nishita, K., Ojima, T., and Ohtsuki, I., 1999, Effects of removal and reconstitution of myosin regulatory light chain and troponin C on the Ca2+-sensitive ATPase activity of myofibrils from scallop striated muscle, J. Biochem. 126:1020–1024.

    PubMed  CAS  Google Scholar 

  • Szczesna, D., Zhang, R., Zhao, J., Jones, M., Guzman, G., and Potter, J. D., 2000, Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy, J. Biol. Chem. 275:624–630.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi-Yanaga, F., Morimoto, S., Harada, K., Minakami, R., Shiraishi, F., Ohta, M., Lu, Q-W., Sasaguri, T., and Ohtsuki, I., 2001, Functional consequences of the mutations in human cardiac troponin I gene found in familial hypertrophic cardiomyopathy, J. Mol. Cell. Cardiol. 33:2095–2107.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, S., Yamashita, A., Maeda, K., and Maeda, Y., 2003, Structure of the core domain of human cardiac troponin in the Ca2+-saturated form, Nature, 424:35–41.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, H., Takeya, Y., Doi, T., Yumoto, F., Tanokura, M., Ohtsuki, I., Nishita, K. and Ojima, T. 2005, Comparative studies on the functional roles of NH2-or COOH-terminal region of molluskan and vertebrate troponin-I, FEBS J. 272(17):4475–4486.

    Article  PubMed  CAS  Google Scholar 

  • Tanokura, M., Tawada, Y., and Ohtsuki, I., 1982, Chymotryptic subfragments of troponin T from rabbit skeletal muscle. I. Determination of the primary structure, J. Biochem. 91:1257–1265.

    PubMed  CAS  Google Scholar 

  • Tanokura, M., Tawada, Y., Ono, A., and Ohtsuki, I., 1983, Chymotryptic subfragments of troponin T from rabbit skeletal muscle. Interaction with tropomyosin, troponin I and troponin C, J. Biochem. 93: 331–337.

    PubMed  CAS  Google Scholar 

  • Thierfelder, L., Watkins, H., MacRae, C., Lamas, R., McKenna, W., Vosberg, H. P., Seidman, J. G., and Seidman C. E., 1994, α-Tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy, Cell, 77:701–712.

    Article  PubMed  Google Scholar 

  • Tripet, B., Van Eyk, J. E., and Hodges, R. S., 1997, Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction, J. Mol. Biol. 271:726–750.

    Article  Google Scholar 

  • Tsao, T.-C., Bailey, K., and Adair, G. S., 1951, The size, shape and aggregation of tropomyosin particles, Biochem. J. 49:27–36.

    PubMed  CAS  Google Scholar 

  • Venkatraman, G., Harada, K., Gomes, A. V., Kerrick, W. G., and Potter, J. D., 2003, Different functional properties of troponin T mutants that cause dilated cardiomyopathy, J. Biol. Chem. 278:41670–41676.

    Article  PubMed  CAS  Google Scholar 

  • Vinogradova, M. V., Stone, D. B., Malanina, G. G., Karatzaferi, C., Cooke, R., Mendelson, R. A., and Fletterick, R. J., 2005, Ca2+-regulated structural changes in troponin, Proc. Natl. Acad. Sci. USA, 102:5038–5043.

    Article  PubMed  CAS  Google Scholar 

  • Yanaga, F., Morimoto, S., and Ohtsuki, I., 1999, Ca2+ sensitization and potentiation of the maximum level of myofibrillar ATPase activity caused by mutations of troponin T found in familial hypertrophic cardiomyopathy, J. Biol. Chem. 274:8806–8812.

    Article  PubMed  CAS  Google Scholar 

  • Yumoto, F., Lu, Q-W., Morimoto, S., Tanaka, H., Kono, N., Ojima, T., Takahashi-Yanaga, F., Miwa, Y., Sasaguri, T., Nishita, K., Tanokura, M., and Ohtsuki, I., 2005, Drastic Ca2+sensitization of myofilament associated with a small structural change in troponin I in inherited restrictive cardiomyopathy, Biochem. Biophys. Res. Commun. 338:1519–1526.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Ohtsuki, I. (2007). Troponin: Structure, Function and Dysfunction. In: Ebashi, S., Ohtsuki, I. (eds) Regulatory Mechanisms of Striated Muscle Contraction. Advances in Experimental Medicine and Biology, vol 592. Springer, Tokyo. https://doi.org/10.1007/978-4-431-38453-3_4

Download citation

Publish with us

Policies and ethics