Skip to main content

Nanomaterials: A Challenge for Toxicological Risk Assessment?

  • Chapter
  • First Online:
Book cover Molecular, Clinical and Environmental Toxicology

Part of the book series: Experientia Supplementum ((EXS,volume 101))

Abstract

Nanotechnology has emerged as one of the central technologies in the twenty-first century. This judgment becomes apparent by considering the increasing numbers of people employed in this area; the numbers of patents, of scientific publications, of products on the market; and the amounts of money invested in R&D. Prospects originating from different fields of nanoapplication seem unlimited. However, nanotechnology certainly will not be able to meet all of the ambitious expectations communicated, yet has high potential to heavily affect our daily life in the years to come. This might occur in particular in the field of consumer products, for example, by introducing nanomaterials in cosmetics, textiles, or food contact materials. Another promising area is the application of nanotechnology in medicine fueling hopes to significantly improve diagnosis and treatment of all kinds of diseases. In addition, novel technologies applying nanomaterials are expected to be instrumental in waste remediation and in the production of efficient energy storage devices and thus may help to overcome world’s energy problems or to revolutionize computer and data storage technologies. In this chapter, we will focus on nanomaterials. After a brief historic and general overview, current proposals of how to define nanomaterials will be summarized. Due to general limitations, there is still no single, internationally accepted definition of the term “nanomaterial.” After elaborating on the status quo and the scope of nanoanalytics and its shortcomings, the current thinking about possible hazards resulting from nanoparticulate exposures, there will be an emphasis on the requirements to be fulfilled for appropriate health risk assessment and regulation of nanomaterials. With regard to reliable risk assessments, until now there is still the remaining issue to be resolved of whether or not specific challenges and unique features exist on the nanoscale that have to be tackled and distinctively addressed, given that they substantially differ from those encountered with microsized materials or regular chemicals. Based on the current knowledge, we finally provide a proposal on how risk assessment in the nanofield could be achieved and how it might look like in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oberdörster G (2010) Nanotoxicology: need for a science based risk assessment. NanoSAFE 2010, Grenoble, France. Online available at http://www.nanosafe.org/home/liblocal/docs/Nanosafe%202010/2010_oral%20presentations/PL4_Oberdorster.pdf

  2. Schummer J, Baird D (2006) Nanotechnology challenges: implications for philosophy, ethics and society. World Scientific Publishing, Singapore

    Book  Google Scholar 

  3. NSTC (1999) Nanotechnology research directions: IWGN Workshop Report. Vision for Nanotechnology R&D in the Next Decade. National Science and Technology Council (NSTC), Committee on Technology (CT), Interagency Working Group on Nanoscience, Engineering and Technology (IWGN), MC Roco, RS Williams, P Alivisatos (eds), Washington DC. Online available at http://www.wtec.org/loyola/nano/IWGN.Research.Directions/IWGN_rd.pdf

  4. NSTC (2000) Nanotechnology research directions for societal needs in 2020. Retrospective and outlook summary. In: Roco MC, Mirkin CA, Hersam MC (eds) Science Policy Reports, WTEC. Springer, Dordrecht, The Netherlands. Online available at http://www.wtec.org/nano2/docs/Nano2-Brochure-Final-04-14-11.pdf

  5. Baalousha M, Lead JR (2009) Overview of nanoscience in the environment. In: Lead JR, Smith E (eds) Environmental and human health impacts of nanotechnology. Wiley-VCH, Chichester, pp 1–29

    Chapter  Google Scholar 

  6. Walter P, Welcomme E, Hallégot P, Zaluzec NJ, Deeb C, Castaing J, Veyssière P, Bréniaux R, Lévêgue JL, Tsoucaris G (2006) Early use of PbS nanotechnology for an ancient hair dyeing formula. Nano Lett 6:2215–2219

    Article  PubMed  CAS  Google Scholar 

  7. Currall SC, King EB, Lane N, Madera J, Turner S (2006) What drives public acceptance of nanotechnology? Nat Nanotechnol 1:153–155

    Article  PubMed  CAS  Google Scholar 

  8. Rotello VM (2004) Nanoparticles: building blocks for nanotechnology. Springer, Heidelberg, Germany

    Google Scholar 

  9. Monteiro-Riviere NA, Tran CL (2007) Nanotoxicology: characterization, dosing, and health effects. Informa Healthcare, New York, NY

    Google Scholar 

  10. Sahu SC, Casciano DA (2009) Nanotoxicity: fromin vivoandin vitromodels to health risks. Wiley-VCH, Chichester

    Google Scholar 

  11. Lead JR, Smith E (2009) Environmental and human health impacts of nanotechnology. Wiley-VCH, Chichester

    Book  Google Scholar 

  12. Murashov V, Howard J (2011) Nanotechnology standards. Springer, New York, NY

    Book  Google Scholar 

  13. Chen PC, Mwakwari SC, Oyelere AK (2008) Gold nanoparticles: from nanomedicine to nanosensing. Nanotech Sci Appl 1:45–66

    CAS  Google Scholar 

  14. Kunckel J (1679) Ars Vitraria Experimentalis Oder vollkommene Glasmacher-Kunst. Frankfurt-Leipzig, Germany

    Google Scholar 

  15. Faraday M (1857) The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181

    Article  Google Scholar 

  16. Schramm LL (2008) Dictionary of nanotechnology. Colloid and Interface Science, Wiley-VCH, Weinheim, Germany

    Google Scholar 

  17. Feynman RP (1960) There’s plenty of room at the bottom. Caltech Eng Sci 23:22–26

    Google Scholar 

  18. Binning G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61

    Article  CAS  Google Scholar 

  19. Binning G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  20. Taniguchi N (1974) On the basic concept of nanotechnology. In: Proceedings of the international conference on production engineering, Tokyo, Part II, Japan Society of Precision Engineering. Japan Society of Precision Engineering, Tokyo

    Google Scholar 

  21. Kreuter J (1983) Evaluation of nanoparticles as drug-delivery system. I. Preparation methods. Pharm Acta Helv 58:196–209

    CAS  Google Scholar 

  22. Lehtipalo K, Kulmala M, Sipilä M, Petäjä T, Vana M, Ceburnis D, Dupuy R, O’Dowd C (2010) Nanoparticles in boreal forest and coastal environment: a comparison of observations and implications of the nucleation mechanism. Atmos Chem Phys 10:7009–7016

    Article  CAS  Google Scholar 

  23. Bertsch PM, Seaman JC (1999) Characterization of complex mineral assemblages: implications for contaminant transport and environment remediation. Proc Natl Acad Sci USA 96:3350–3357

    Article  PubMed  CAS  Google Scholar 

  24. Williams PM, Druffel ERM (1988) Dissolved organic matter in the ocean: comments on a controversy. Oceanography 1:14–17

    Google Scholar 

  25. Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials. Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32

    Article  PubMed  CAS  Google Scholar 

  26. NNI (2004) U.S. National Nanotechnology Initiative. Online available at http://www.nano.gov/

  27. Shenderova OA, Zhirnov VV, Brenner DW (2002) Carbon nanostructures. Crit Rev Sol Stat Mat Sci 27:227–356

    Article  CAS  Google Scholar 

  28. Hodge GA, Bowman DM, Maynard AD (2010) International Handbook on Regulating Nanotechnologies. Edward Elgar, Cheltenham, UK. Online available at http://umrscblogs.org/wp-content/uploads/2011/02/Handbook-Regulating_nanotech_ch126.pdf

  29. CEN/ISO (2008) Nanotechnologies: terminology and definitions for nano-objects—nanoparticle, nanofibre and nanoplate. European Committee for Standarizaton, Technical Specification (TS) 27687, DIN SPEC, Deutsches Institut für Industrienormung e.V., Berlin, Germany

    Google Scholar 

  30. Bernard D (2010) Nanomaterials and uncertainties: regulation needs and standardisation answers. NanoSAFE 2010, Grenoble, France. Online available at http://www.nanosafe.org/home/liblocal/docs/Nanosafe%202010/2010_oral%20presentations/PL9_Bernard.pdf

  31. Maynard A, Bowman D, Hodge G (2011) The problem of regulating sophisticated materials. Nat Mater 10:554–557

    Article  PubMed  CAS  Google Scholar 

  32. BSI (2005) Vocabulary. Nanoparticles. PAS 71:2005, British Standards Institution, BSI Corporate, London, UK. Online available at http://shop.bsigroup.com/en/ProductDetail/?pid=000000000030127836

  33. BSI (2007) Terminology for nanomaterials. PAS 136:2007, British Standards Institution, BSI Corporate, London, UK. Online available at http://shop.bsigroup.com/Navigate-by/PAS/

  34. Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518:3127–3150

    Article  CAS  Google Scholar 

  35. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem 107:668–677

    CAS  Google Scholar 

  36. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  PubMed  CAS  Google Scholar 

  37. Christian P (2009) Nanomaterials: properties, preparation and applications. In: Lead JR, Smith E (eds) Environmental and human health impacts of nanotechnology. Wiley, Chichester, pp 31–77

    Chapter  Google Scholar 

  38. Bukowski T, Simmons J (2002) Quantum dot research: current state and future prospects. Crit Rev Solid Stat Mat Sci 27:119–142

    Article  CAS  Google Scholar 

  39. Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60:167–192

    Article  PubMed  CAS  Google Scholar 

  40. Abrams BL, Wilcoxon JP (2005) Nanosize semiconductors for photooxidation. Crit Rev Solid Stat Mat Sci 30:153–182

    Article  CAS  Google Scholar 

  41. Milliron DJ, Alivisatos AP, Pitois C, Edder C, Fréchet JMJ (2003) Electroactive surfactant designed to mediate electron transfer between CdSe nanocrystals and organic semiconductors. Adv Mat 15:58–61

    Article  CAS  Google Scholar 

  42. Zhao CM, Wang WX (2011) Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicology (Epub ahead)

    Google Scholar 

  43. Roco MC (2005) International perspective on government nanotechnology funding in 2005. J Nanopart Res 7:707–712

    Article  Google Scholar 

  44. Park K (2007) Nanotechnology: what it can do for drug delivery. J Control Release 120:1–3

    Article  PubMed  CAS  Google Scholar 

  45. Ketchie W, Fang Y, Wong M, Murayama M, Davis R (2007) Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol. J Catal 250:94–101

    Article  CAS  Google Scholar 

  46. Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. J Phys Chem C 111:4596–4605

    Article  CAS  Google Scholar 

  47. Levine S (1939) Problems of stability in hydrophobic colloidal solutions. I. On the interaction of two colloidal metallic particles. General discussion and applications. Proc R Soc Lond 170:145–164

    Article  CAS  Google Scholar 

  48. Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 100–102:503–546

    Article  CAS  Google Scholar 

  49. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versusorganic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  PubMed  CAS  Google Scholar 

  50. Blanco E, Hsiao A, Mann AP, Landry MG, Meric-Bernstam F, Ferrari M (2011) Nanomedicine in cancer therapy: innovative trends and prospects. Cancer Sci 102:1247–1252

    Article  PubMed  CAS  Google Scholar 

  51. Yih TC, Al-Fandi M (2006) Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 97:1184–1190

    Article  PubMed  CAS  Google Scholar 

  52. Petrelli F, Borgonovo K, Barni S (2010) Targeted delivery for breast cancer therapy: the history of nanoparticle-albumin-bound paclitaxel. Exp Opin Pharmacother 11:1413–1432

    Article  PubMed  CAS  Google Scholar 

  53. Mansour HM, Rhee YS, Wu X (2009) Nanomedicine in pulmonary delivery. Int J Nanomedicine 4:299–319

    Article  PubMed  CAS  Google Scholar 

  54. Costantino L (2010) Drug delivery to the CNS and polymeric nanoparticulate carriers. Future Med Chem 2:1681–1701

    Article  PubMed  CAS  Google Scholar 

  55. Woodrow Wilson International Center for Scholars. The Project on Emerging Nanotechnologies (PEN). Woodrow Wilson Database on Consumer Products. Online available at http://www.nanotechproject.org/inventories/consumer/

  56. Nohynek GJ, Antignac E, Re T, Toutain H (2010) Safety assessment of personal care products/cosmetics and their ingredients. Toxicol Appl Pharmacol 243:239–259

    Article  PubMed  CAS  Google Scholar 

  57. Wiechers JW, Musee N (2010) Engineered inorganic nanoparticles and cosmetics: facts, issues, knowledge gaps and challenges. J Biomed Nanotechnol 6:408–431

    Article  PubMed  CAS  Google Scholar 

  58. Ross BL, Aitken RJ (2010) Technology Sector Evaluation: Textiles. European Nanotechnology Gateway. ObservatoryNANO. Online available at http://www.observatorynano.eu/project/

  59. Upadhyayula VK, Deng S, Mitchell MC, Smith GB (2009) Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci Total Environ 408:1–13

    Article  PubMed  CAS  Google Scholar 

  60. Kwon S, Fan M, Cooper AT, Yang H (2008) Photocatalytic applications of micro- and nano-TiO2in environmental engineering. Crit Rev Environ Sci Technol 38:197–226

    Article  CAS  Google Scholar 

  61. Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050

    Article  PubMed  CAS  Google Scholar 

  62. Diallo MS, Christie S, Swaminathan P, Balogh L, Shi X, Um W, Papelis C, Goddard WA 3rd, Johnson JH Jr (2004) Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20:2640–2651

    Article  PubMed  CAS  Google Scholar 

  63. Diallo MS, Arasho W, Johnson JH Jr, Goddard WA 3rd (2008) Dendritic chelating agents. 2. U(VI) binding to poly(amidoamine) and poly(propyleneimine) dendrimers in aqueous solutions. Environ Sci Technol 42:1572–1579

    Article  PubMed  CAS  Google Scholar 

  64. Barsan N, Schweizer-Berberich M, Göpel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2gas sensors: a status report. Fresenius J Anal Chem 365:287–304

    Article  CAS  Google Scholar 

  65. Kim YC, Sasaki S, Yano K, Ikebukuro K, Hashimoto K, Karube I (2001) Photocatalytic sensor for the determination of chemical oxygen demand using flow injection analysis. Anal Chim Acta 432:59–66

    Article  CAS  Google Scholar 

  66. Sinnott SB, Andrews R (2001) Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid Stat Mat Sci 26:145–249

    Article  CAS  Google Scholar 

  67. Seaton A, Tran L, Aitken R, Donaldson K (2010) Nanoparticles, human health hazard and regulation. J R Soc Interface 7(Suppl 1):S119–S129

    Article  PubMed  CAS  Google Scholar 

  68. Ebbesen TW, Ajayan PM, Hiura H, Tanigaki K (1994) Purification of nanotubes. Nature 367:519

    Article  Google Scholar 

  69. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444:267–269

    Article  PubMed  CAS  Google Scholar 

  70. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  CAS  Google Scholar 

  71. Simkó M, Mattsson MO (2010) Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Part Fibre Toxicol 7:42–57

    Article  PubMed  CAS  Google Scholar 

  72. OECD Working Party on Nanotechnology (WPN). Online available at http://www.oecd.org/document/35/0,3746,en_21571361_41212117_42378531_1_1_1_1,00.html

  73. Crane M, Handy RD (2007) An assessment of regulatory testing strategies and methods for characterizing the ecotoxicological hazards of nanomaterials. Watts & Crane Associates, Report for Defra, London, UK. Online available at http://randd.defra.gov.uk/Document.aspx?Document=CB01097_6262_FRP.pdf

  74. Crane M, Handy RD, Garrod J, Owen R (2008) Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17:421–437

    Article  PubMed  CAS  Google Scholar 

  75. Warheit DB, Sayes CM, Reed KL, Swain KA (2008) Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther 120:35–42

    Article  PubMed  CAS  Google Scholar 

  76. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270

    Article  PubMed  Google Scholar 

  77. Jiang X, Weise S, Hafner M, Röcker C, Zhang F, Parak WJ, Nienhaus GU (2010) Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J R Soc Interface 7(Suppl 1):S5–S13

    Article  PubMed  CAS  Google Scholar 

  78. Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580

    Article  PubMed  CAS  Google Scholar 

  79. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055

    Article  PubMed  CAS  Google Scholar 

  80. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  PubMed  CAS  Google Scholar 

  81. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8

    Article  PubMed  CAS  Google Scholar 

  82. Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2009) Current in vitromethods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 72:370–377

    Article  PubMed  CAS  Google Scholar 

  83. Jones CF, Grainger DW (2009) In vitroassessments of nanomaterial toxicity. Adv Drug Deliv Rev 61:438–456

    Article  PubMed  CAS  Google Scholar 

  84. Landsiedel R, Ma-Hock L, Kroll A, Hahn D, Schnekenburger J, Wiench K, Wohlleben W (2010) Testing metal-oxide nanomaterials for human safety. Adv Mater 22:2601–2627

    Article  PubMed  CAS  Google Scholar 

  85. SCENIHR (2009) Risk assessment of products of nanotechnologies. Scientific committee on emerging and newly identified health risks, European commission, health & consumers DG, Brussels, Belgium. Online available at http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_023.pdf

  86. Tiede K, Hassellöv M, Breitbarth E, Chaudhry Q, Boxall AB (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A 1216:503–509

    Article  PubMed  CAS  Google Scholar 

  87. Stone V, Nowack B, Baun A, van den Brink N, Kammer F, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E, Fernandes TF (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754

    Article  PubMed  CAS  Google Scholar 

  88. EFSA (2009) The potential risks arising from nanoscience and nanotechnologies on food and feed safety. Scientific Opinion of the Scientific Committee. EFSA J 958: 1–39. Online available at http://www.efsa.europa.eu/de/scdocs/doc/958.pdf

  89. Khlebtsov BN, Khlebtsov NG (2011) On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J 73:118–127

    Article  CAS  Google Scholar 

  90. European Nanotechnology Gateway (2006) Nanometrology.Nanoforum.org 8th Nanoforum Report. Online available at http://www.nanoforum.org

  91. Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303

    Article  PubMed  CAS  Google Scholar 

  92. Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51

    Article  CAS  Google Scholar 

  93. Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  PubMed  CAS  Google Scholar 

  94. Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123:2058–2059

    Article  PubMed  CAS  Google Scholar 

  95. Liang P, Ding Q, Song F (2006) Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. J Sep Sci 28:2339–2343

    Article  CAS  Google Scholar 

  96. Zhang WS (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  97. Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V (2002) Interactions between ultrafine particles and transition metals in vivoand in vitro. Toxicol Appl Pharmacol 184:172–179

    Article  PubMed  CAS  Google Scholar 

  98. Wilson MR, Foucaud L, Barlow PG, Hutchison GR, Sales J, Simpson RJ, Stone V (2007) Nanoparticle interactions with zinc and iron: implications for toxicology and inflammation. Toxicol Appl Pharmacol 225:80–89

    Article  PubMed  CAS  Google Scholar 

  99. Takano H, Ichinose T, Miyabara Y, Shibuya T, Lim HB, Yoshikawa T, Sagai M (1998) Inhalation of diesel exhaust enhances allergen-related eosinophil recruitment and airway hyperresponsiveness in mice. Toxicol Appl Pharmacol 150:328–337

    Article  PubMed  CAS  Google Scholar 

  100. Harkema JR, Rowley N, Bramble L, Zhang Q, Jackson-Humbles D, Baker G, Wagner J, Worden M (2011) Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice. Society of Toxicology (SOT), 50th Anniversary Meeting, March 6–10, Washington DC, USA, Abstract #1463

    Google Scholar 

  101. Peek LJ, Middaugh CR, Berkland C (2008) Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 60:915–928

    Article  PubMed  CAS  Google Scholar 

  102. Horie M, Nishio K, Fujita K, Endoh S, Miyauchi A, Saito Y, Iwahashi H, Yamamoto K, Murayama H, Nakano H, Nanashima N, Niki E, Yoshida Y (2009) Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem Res Toxicol 22:543–553

    Article  PubMed  CAS  Google Scholar 

  103. Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807

    Article  PubMed  Google Scholar 

  104. Khandoga A, Stoeger T, Khandoga AG, Bihari P, Karg E, Ettehadieh D, Lakatos S, Fent J, Schulz H, Krombach F (2010) Platelet adhesion and fibrinogen deposition in murine microvessels upon inhalation of nanosized carbon particles. J Thromb Haemost 8:1632–1640

    Article  PubMed  CAS  Google Scholar 

  105. Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, Elder A, Han X, Gelein R, Finkelstein J, Oberdörster G (2010) Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A 73:445–461

    Article  PubMed  CAS  Google Scholar 

  106. Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F (2009) Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations—many questions, some answers. Mutat Res 681:241–258

    Article  PubMed  CAS  Google Scholar 

  107. Warheit DB, Borm PJ, Hennes C, Lademann J (2007) Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhal Toxicol 19:631–643

    Article  PubMed  CAS  Google Scholar 

  108. OECD Working Party on Manufactured Nanomaterials (WPMN). Website: http://www.oecd.org/document/47/0,3746,en_2649_37015404_41197295_1_1_1_1,00.html

  109. Apte SC, Roger NJ, Batley GE (2009) Ecotoxicology of manufactured nanoparticles. In: Lead JR, Smith E (eds) Environmental and human health impacts of nanotechnology. Wiley, Chichester, pp 267–306

    Chapter  Google Scholar 

  110. Oberdörster E, Zhu S, Blickley TM, McClellan-Green HML (2006) Ecotoxicology of carbon-based engineered NPs: effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120

    Article  CAS  Google Scholar 

  111. Hristozov D, Malsch I (2009) Hazards and risks of engineered nanoparticles for the environment and human health. Sustainability 1:1161–1194

    Article  CAS  Google Scholar 

  112. Baroli B (2010) Skin absorption and potential toxicity of nanoparticulate nanomaterials. J Biomed Nanotechnol 6:485–496

    Article  PubMed  CAS  Google Scholar 

  113. Smijs TG, Bouwstra JA (2010) Focus on skin as a possible port of entry for solid nanoparticles and the toxicological impact. J Biomed Nanotechnol 6:469–484

    Article  PubMed  CAS  Google Scholar 

  114. Pflücker F, Hohenberg H, Hölzle E, Will T, Pfeiffer S, Wepf R, Diembeck W, Wenck H, Gers-Barlag H (1999) The outermost stratum corneum layer is an effective barrier against dermal uptake of topically applied microsized titanium dioxide. Int J Cosmet Sci 21:399–411

    Article  PubMed  Google Scholar 

  115. Pflücker F, Wendel V, Hohenberg H, Gärtner E, Will T, Pfeiffer S, Wepf R, Gers-Barlag H (2001) The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied microsized titanium dioxide. Skin Pharmacol Appl Skin Physiol 14(Suppl 1):92–97

    PubMed  Google Scholar 

  116. Zvyagin AV, Zhao X, Gierden A, Sanchez W, Ross JA, Roberts MS (2008) Imaging of zinc oxide nanoparticle penetration in human skin in vitroand in vivo. J Biomed Opt 13:064031

    Article  PubMed  CAS  Google Scholar 

  117. Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria A (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89:42–50

    Article  PubMed  CAS  Google Scholar 

  118. NANODERM (2007) Quality of Skin as a Barrier to ultra-fine Particles. Final Report. Online available at http://www.uni-leipzig.de/~nanoderm/Downloads/Nanoderm_Final_Report.pdf

  119. Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255:33–37

    Article  PubMed  CAS  Google Scholar 

  120. Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, Adkins EJ (2003) Skin as route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111:1202–1208

    Article  PubMed  CAS  Google Scholar 

  121. Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, Xu H, Yang X, Zeng FD (2009) Toxicity and penetration of TiO2nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett 191:1–8

    Article  PubMed  CAS  Google Scholar 

  122. Powell JJ, Faria N, Thomas-McKay E, Pele LC (2010) Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 34:J226–J233

    Article  PubMed  CAS  Google Scholar 

  123. Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936

    Article  PubMed  CAS  Google Scholar 

  124. Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ, Hwang IK, Yu IJ (2010) Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7:20–30

    Article  PubMed  CAS  Google Scholar 

  125. Semete B, Booysen L, Lemmer Y, Kalombo L, Katata L, Verschoor J, Swai HS (2010) In vivoevaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine 6:662–671

    Article  PubMed  CAS  Google Scholar 

  126. IARC (1998) Asbestos. Monographs on the evaluation of carcinogenic risks to humans. overall evaluations of carcinogenicity: an updating of IARC monographs, vols 1–42, Suppl 7, World Health Organisation (WHO), International Agency for Research on Cancer (IARC), Lyon, France. Online available at http://monographs.iarc.fr/ENG/Monographs/suppl7/suppl7.pdf

  127. IARC (1997) Silica. Summary of data reported and evaluation. Monographs on the evaluation of carcinogenic risks to humans, vol 68, World Health Organisation (WHO), International Agency for Research on Cancer (IARC), Lyon, France. Online available at http://monographs.iarc.fr/ENG/Monographs/vol68/volume68.pdf

  128. Seaton A, MacNee W, Donaldson K, Godden D (1995) Particulate air pollution and acute health effects. Lancet 345:176–178

    Article  PubMed  CAS  Google Scholar 

  129. Oberdörster G (1988) Lung clearance of inhaled insoluble and soluble particles. J Aerosol Med 1:289–330

    Article  Google Scholar 

  130. ICRP (1994) Human respiratory tract model for radiological protection. International Commission on Radiological Protection, ICRP Publication 66. Ann ICRP 24. Online available at http://www.icrp.org/publications.asp

  131. Oberdörster G, Ferin J, Finkelstein J, Wade P, Corson N (1990) Increased pulmonary toxicity of ultrafine particles? II. Lung lavage studies. J Aerosol Sci 21:384–387

    Article  Google Scholar 

  132. Oberdörster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivoparticle persistence, and lung injury. Environ Health Perspect 102(Suppl 5):173–179

    Article  PubMed  Google Scholar 

  133. Li XY, Brown D, Smith S, MacNee W, Donaldson K (1999) Short-term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhal Toxicol 11:709–731

    Article  PubMed  Google Scholar 

  134. Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H (2006) Instillation of six different ultrafine carbon black particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114:328–333

    Article  PubMed  Google Scholar 

  135. Brown DM, Wilson MR, McNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199

    Article  PubMed  CAS  Google Scholar 

  136. Oberdörster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J (1992) Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ Health Perspect 97:193–199

    PubMed  Google Scholar 

  137. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    Article  PubMed  CAS  Google Scholar 

  138. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–1178

    Article  PubMed  CAS  Google Scholar 

  139. Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, Shin JH, Sung JH, Song KS, Yu IJ (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 19:857–871

    Article  PubMed  CAS  Google Scholar 

  140. Iavicoli I, Leso V, Fontana L, Bergamaschi A (2011) Toxicological effects of titanium dioxide nanoparticles: a review of in vitromammalian studies. Eur Rev Med Pharmacol Sci 15:481–508

    PubMed  CAS  Google Scholar 

  141. Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitroand in vivostudies. Chem Soc Rev 40:1647–1671

    Article  PubMed  CAS  Google Scholar 

  142. Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivoand in vitrotoxicity of silver and gold nanoparticles: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–346

    Article  PubMed  CAS  Google Scholar 

  143. Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180:222–229

    Article  PubMed  CAS  Google Scholar 

  144. Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V (2004) Calcium and ROS-mediated activation of transcription factors and TNF-α cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 286:L344–L353

    Article  CAS  Google Scholar 

  145. Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitromeasurements to in vivopulmonary toxicity profiles. Toxicol Sci 97:163–180

    Article  PubMed  CAS  Google Scholar 

  146. Duffin R, Tran L, Brown D, Stone V, Donaldson K (2007) Proinflammogenic effects of low-toxicity and metal nanoparticles in vivoand in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19:849–856

    Article  PubMed  CAS  Google Scholar 

  147. Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  PubMed  CAS  Google Scholar 

  148. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

    Article  PubMed  CAS  Google Scholar 

  149. Ono-Ogasawara M, Serita F, Takaya M (2009) Distinguishing nanomaterial particles from background airborne particulate matter for quantitative exposure assessment. J Nanopart Res 11:1651–1659

    Article  CAS  Google Scholar 

  150. Rocks SA, Pollard SJ, Dorey RA, Harrison PTC, Levy LS, Handy RD, Garrod JF, Owen R (2009) Risk assessment of manufactured nanomaterials. In: Lead JR, Smith E (eds) Environmental and human health impacts of nanotechnology. Wiley, Chichester, pp 389–421

    Chapter  Google Scholar 

  151. Morris J, Willis J, De Martinis D, Hansen B, Laursen H, Sintes JR, Kearns P, Gonzalez M (2011) Science policy considerations for responsible nanotechnology decisions. Nat Nanotechol 6:73–77

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Luch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Haase, A., Tentschert, J., Luch, A. (2012). Nanomaterials: A Challenge for Toxicological Risk Assessment?. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 101. Springer, Basel. https://doi.org/10.1007/978-3-7643-8340-4_8

Download citation

Publish with us

Policies and ethics