Skip to main content

Toxicology of Ambient Particulate Matter

  • Chapter
  • First Online:
Molecular, Clinical and Environmental Toxicology

Part of the book series: Experientia Supplementum ((EXS,volume 101))

Abstract

It is becoming increasingly clear that inhalation exposure to particulate matter (PM) can lead to or exacerbate various diseases, which are not limited to the lung but extend to the cardiovascular system and possibly other organs and tissues. Epidemiological studies have provided strong evidence for associations with chronic obstructive pulmonary disease (COPD), asthma, bronchitis and cardiovascular disease, while the evidence for a link with lung cancer is less strong. Novel research has provided first hints that exposure to PM might lead to diabetes and central nervous system (CNS) pathology. In the current review, an overview is presented of the toxicological basis for adverse health effects that have been linked to PM inhalation. Oxidative stress and inflammation are discussed as central processes driving adverse effects; in addition, profibrotic and allergic processes are implicated in PM-related diseases. Effects of PM on key cell types considered as regulators of inflammatory, fibrotic and allergic mechanisms are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowman DM, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, Defries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the Earth system. Science 324:481–484

    Article  PubMed  CAS  Google Scholar 

  2. Nemery B, Hoet PH, Nemmar A (2001) The Meuse Valley fog of 1930: an air pollution disaster. Lancet 357:704–708

    Article  PubMed  CAS  Google Scholar 

  3. Firket J (1936) Fog along the Meuse Valley. Trans Faraday Soc 32:1192–1197

    Article  CAS  Google Scholar 

  4. London Ministry of Health (1954) Mortality and morbidity during the London Fog of December 1952. Reports on Public Health and Medical Subjects no 95, London

    Google Scholar 

  5. Dooley EE (2002) Fifty years later: clearing the air over the London smog. Environ Health Perspect 110:A748

    Article  PubMed  Google Scholar 

  6. Bown W (1994) Dying from too much dust. New Scientist 12:12–13

    Google Scholar 

  7. Pope CA 3rd (1989) Respiratory disease associated with community air pollution and a steel mill, Utah Valley. Am J Public Health 79:623–628

    Article  PubMed  Google Scholar 

  8. Ghio AJ (2004) Biological effects of Utah Valley ambient air particles in humans: a review. J Aerosol Med 17:157–164

    Article  PubMed  CAS  Google Scholar 

  9. Daniels MJ, Dominici F, Samet JM, Zeger SL (2000) Estimating particulate matter-mortality dose-response curves and threshold levels: an analysis of daily time-series for the 20 largest US cities. Am J Epidemiol 152:397–406

    Article  PubMed  CAS  Google Scholar 

  10. Dockery DW, Pope CA 3rd, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, Speizer FE (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759

    Article  PubMed  CAS  Google Scholar 

  11. Pope CA 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Am Med Assoc 287:1132–1141

    Article  CAS  Google Scholar 

  12. Clancy L, Goodman P, Sinclair H, Dockery DW (2002) Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study. Lancet 360:1210–1214

    Article  PubMed  Google Scholar 

  13. Schins RP, Lightbody JH, Borm PJ, Shi T, Donaldson K, Stone V (2004) Inflammatory effects of coarse and fine particulate matter in relation to chemical and biological constituents. Toxicol Appl Pharmacol 195:1–11

    Article  PubMed  CAS  Google Scholar 

  14. Turnbull AB, Harrison RM (2000) Major component contributions to PM10 composition in the UK atmosphere. Atmos Environ 34:3129–3137

    Article  CAS  Google Scholar 

  15. Lippmann M (2000) Environmental toxicants. Wiley, New York, NY

    Google Scholar 

  16. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  CAS  Google Scholar 

  17. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460

    Article  PubMed  CAS  Google Scholar 

  18. Scheepers PT, Bos RP (1992) Combustion of diesel fuel from a toxicological perspective I. Origin of incomplete combustion products. Int Arch Occup Environ Health 64:149–161

    Article  PubMed  CAS  Google Scholar 

  19. Saldiva PH, Clarke RW, Coull BA, Stearns RC, Lawrence J, Murthy GG, Diaz E, Koutrakis P, Suh H, Tsuda A, Godleski JJ (2002) Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am J Respir Crit Care Med 165:1610–1617

    Article  PubMed  Google Scholar 

  20. WHO (2006) Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide—summary of risk assessment. World Health Organization, Geneva, Switzerland. Online available at http://www.who.int/phe/health_topics/outdoorair_aqg/en/

  21. Kreyling WG, Möller W, Semmler-Behnke M, Oberdörster G (2007) Particle dosimetry: deposition and clearance from the respiratory tract and translocation towards extra-pulmonary sites. In: Donaldson K, Borm P (eds) Particle toxicology. CRC, Taylor & Francis, Boca Raton, FL, pp 47–74

    Google Scholar 

  22. Wei F, Teng E, Wu G, Hu W, Wilson WE, Chapman RS, Pau PC, Zahang J (1999) Ambient concentrations and elemental compositions of PM10 and PM2.5 in four Chinese cities. Environ Sci Technol 33:4188–4193

    Article  CAS  Google Scholar 

  23. Pope CA 3rd (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspect 108(Suppl 4):713–723

    Article  PubMed  CAS  Google Scholar 

  24. Hathout EH, Beeson WL, Nahab F, Rabadi A, Thomas W, Mace JW (2002) Role of exposure to air pollutants in the development of type 1 diabetes before and after 5 year of age. Pediatr Diab 3:184–188

    Article  Google Scholar 

  25. Pearson JF, Bachireddy C, Shyamprasad S, Goldfine AB, Brownstein JS (2010) Association between fine particulate matter and diabetes prevalence in the U.S. Diabetes Care 33:2196–2201

    Article  PubMed  Google Scholar 

  26. Krämer U, Herder C, Sugiri D, Strassburger K, Schikowski T, Ranft U, Rathmann W (2010) Traffic-related air pollution and incident type 2 diabetes: results from the SALIA cohort study. Environ Health Perspect 118:1273–1279

    Article  PubMed  Google Scholar 

  27. UNEP (1994) U.N. Environment Programme and WHO report. Environment 36:4

    Google Scholar 

  28. Aust AE, Ball JC, Hu AA, Lighty JS, Smith KR, Straccia AM, Veranth JM, Young WC (2002) Particle characteristics responsible for effects on human lung epithelial cells. Res Rep Health Eff Inst 110:1–65 (discussion 67–76)

    PubMed  Google Scholar 

  29. Ghio AJ, Devlin RB (2001) Inflammatory lung injury after bronchial instillation of air pollution particles. Am J Respir Crit Care Med 164:704–708

    PubMed  CAS  Google Scholar 

  30. Molinelli AR, Madden MC, McGee JK, Stonehuerner JG, Ghio AJ (2002) Effect of metal removal on the toxicity of airborne particulate matter from the Utah Valley. Inhal Toxicol 14:1069–1086

    Article  PubMed  CAS  Google Scholar 

  31. Donaldson K, Stone V, Borm PJ, Jimenez LA, Gilmour PS, Schins RP, Knaapen AM, Rahman I, Faux SP, Brown DM, MacNee W (2003) Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic Biol Med 34:1369–1382

    Article  PubMed  CAS  Google Scholar 

  32. Seaton A, MacNee W, Donaldson K, Godden D (1995) Particulate air pollution and acute health effects. Lancet 345:176–178

    Article  PubMed  CAS  Google Scholar 

  33. Monn C, Becker S (1999) Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air. Toxicol Appl Pharmacol 155:245–252

    Article  PubMed  CAS  Google Scholar 

  34. Bonvallot V, Baeza-Squiban A, Baulig A, Brulant S, Boland S, Muzeau F, Barouki R, Marano F (2001) Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. Am J Respir Cell Mol Biol 25:515–521

    PubMed  CAS  Google Scholar 

  35. Nel AE, Diaz-Sanchez D, Li N (2001) The role of particulate pollutants in pulmonary inflammation and asthma: evidence for the involvement of organic chemicals and oxidative stress. Curr Opin Pulm Med 7:20–26

    Article  PubMed  CAS  Google Scholar 

  36. Donaldson K, Tran CL (2002) Inflammation caused by particles and fibers. Inhal Toxicol 14:5–27

    Article  PubMed  CAS  Google Scholar 

  37. Lee JT, Son JY, Cho YS (2007) The adverse effects of fine particle air pollution on respiratory function in the elderly. Sci Total Environ 385:28–36

    Article  PubMed  CAS  Google Scholar 

  38. Zanobetti A, Schwartz J (2001) Are diabetics more susceptible to the health effects of airborne particles? Am J Respir Crit Care Med 164:831–833

    PubMed  CAS  Google Scholar 

  39. Yang IA, Fong KM, Zimmerman PV, Holgate ST, Holloway JW (2008) Genetic susceptibility to the respiratory effects of air pollution. Thorax 63:555–563

    PubMed  CAS  Google Scholar 

  40. Nel AE, Diaz-Sanchez D, Ng D, Hiura T, Saxon A (1998) Enhancement of allergic inflammation by the interaction between diesel exhaust particles and the immune system. J Allergy Clin Immunol 102:539–554

    Article  PubMed  CAS  Google Scholar 

  41. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL (2000) Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994. N Engl J Med 343:1742–1749

    Article  PubMed  CAS  Google Scholar 

  42. MacNee W, Donaldson K (2000) Exacerbations of COPD: environmental mechanisms. Chest 117:390S–397S

    Article  PubMed  CAS  Google Scholar 

  43. Sint T, Donohue JF, Ghio AJ (2008) Ambient air pollution particles and the acute exacerbation of chronic obstructive pulmonary disease. Inhal Toxicol 20:25–29

    Article  PubMed  CAS  Google Scholar 

  44. Wordley J, Walters S, Ayres JG (1997) Short term variations in hospital admissions and mortality and particulate air pollution. Occup Environ Med 54:108–116

    Article  PubMed  CAS  Google Scholar 

  45. Churg A, Brauer M, del Carmen Avila-Casado M, Fortoul TI, Wright JL (2003) Chronic exposure to high levels of particulate air pollution and small airway remodeling. Environ Health Perspect 111:714–718

    Article  PubMed  CAS  Google Scholar 

  46. Bonner JC (2007) Lung fibrotic responses to particle exposure. Toxicol Pathol 35:148–153

    Article  PubMed  CAS  Google Scholar 

  47. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 24:99–146

    Article  PubMed  CAS  Google Scholar 

  48. Vanhee D, Gosset P, Wallaert B, Voisin C, Tonnel AB (1994) Mechanisms of fibrosis in coal workers’ pneumoconiosis. Increased production of platelet-derived growth factor, insulin-like growth factor type I, and transforming growth factor beta and relationship to disease severity. Am J Respir Crit Care Med 150:1049–1055

    PubMed  CAS  Google Scholar 

  49. Yamashita N, Sekine K, Miyasaka T, Kawashima R, Nakajima Y, Nakano J, Yamamoto T, Horiuchi T, Hirai K, Ohta K (2001) Platelet-derived growth factor is involved in the augmentation of airway responsiveness through remodeling of airways in diesel exhaust particulate-treated mice. J Allergy Clin Immunol 107:135–142

    Article  PubMed  CAS  Google Scholar 

  50. Zhang K, Phan SH (1996) Cytokines and pulmonary fibrosis. Biol Signals 5:232–239

    Article  PubMed  CAS  Google Scholar 

  51. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  PubMed  CAS  Google Scholar 

  52. Hunninghake GW, Garrett KC, Richerson HB, Fantone JC, Ward PA, Rennard SI, Bitterman PB, Crystal RG (1984) Pathogenesis of the granulomatous lung diseases. Am Rev Respir Dis 130:476–496

    PubMed  CAS  Google Scholar 

  53. von Klot S, Wolke G, Tuch T, Heinrich J, Dockery DW, Schwartz J, Kreyling WG, Wichmann HE, Peters A (2002) Increased asthma medication use in association with ambient fine and ultrafine particles. Eur Respir J 20:691–702

    Article  CAS  Google Scholar 

  54. de Haar C, Hassing I, Bol M, Bleumink R, Pieters R (2006) Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. Clin Exp Allergy 36:1469–1479

    Article  PubMed  Google Scholar 

  55. Kleinman MT, Sioutas C, Froines JR, Fanning E, Hamade A, Mendez L, Meacher D, Oldham M (2007) Inhalation of concentrated ambient particulate matter near a heavily trafficked road stimulates antigen-induced airway responses in mice. Inhal Toxicol 19(Suppl 1):117–126

    Article  PubMed  CAS  Google Scholar 

  56. de Haar C, Kool M, Hassing I, Bol M, Lambrecht BN, Pieters R (2008) Lung dendritic cells are stimulated by ultrafine particles and play a key role in particle adjuvant activity. J Allergy Clin Immunol 121:1246–1254

    Article  PubMed  CAS  Google Scholar 

  57. Inoue K, Koike E, Takano H, Yanagisawa R, Ichinose T, Yoshikawa T (2009) Effects of diesel exhaust particles on antigen-presenting cells and antigen-specific Th immunity in mice. Exp Biol Med 234:200–209

    Article  CAS  Google Scholar 

  58. Provoost S, Maes T, Willart MA, Joos GF, Lambrecht BN, Tournoy KG (2010) Diesel exhaust particles stimulate adaptive immunity by acting on pulmonary dendritic cells. J Immunol 184:426–432

    Article  PubMed  CAS  Google Scholar 

  59. Laden F, Schwartz J, Speizer FE, Dockery DW (2006) Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med 173:667–672

    Article  PubMed  CAS  Google Scholar 

  60. Mauderly JL (2000) Diesel exhaust. In: Lippmann M (ed) Environmental toxicants: human exposure and their health effects. Wiley, New York, NY

    Google Scholar 

  61. Schins RP (2002) Mechanisms of genotoxicity of particles and fibers. Inhal Toxicol 14:57–78

    Article  PubMed  CAS  Google Scholar 

  62. Azad N, Rojanasakul Y, Vallyathan V (2008) Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev 11:1–15

    Article  PubMed  CAS  Google Scholar 

  63. Knaapen AM, Borm PJ, Albrecht C, Schins RP (2004) Inhaled particles and lung cancer part A: mechanisms. Int J Cancer 109:799–809

    Article  PubMed  CAS  Google Scholar 

  64. Castranova V, Ma JY, Yang HM, Antonini JM, Butterworth L, Barger MW, Roberts J, Ma JK (2001) Effect of exposure to diesel exhaust particles on the susceptibility of the lung to infection. Environ Health Perspect 109(Suppl 4):609–612

    PubMed  CAS  Google Scholar 

  65. Yang HM, Antonini JM, Barger MW, Butterworth L, Roberts BR, Ma JK, Castranova V, Ma JY (2001) Diesel exhaust particles suppress macrophage function and slow the pulmonary clearance of Listeria monocytogenes in rats. Environ Health Perspect 109:515–521

    Article  PubMed  CAS  Google Scholar 

  66. Becker S, Soukup JM (1999) Exposure to urban air particulates alters the macrophage-mediated inflammatory response to respiratory viral infection. J Toxicol Environ Health A 57:445–457

    Article  PubMed  CAS  Google Scholar 

  67. Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, Sandström T, Blomberg A, Newby DE (2009) Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med 6:36–44

    Article  PubMed  CAS  Google Scholar 

  68. Brook RD (2008) Cardiovascular effects of air pollution. Clin Sci 115:175–187

    Article  PubMed  CAS  Google Scholar 

  69. Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SC Jr, Trager I (2004) Air pollution and cardiovascular disease: a statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation 109:2655–2671

    Article  PubMed  Google Scholar 

  70. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–2378

    Article  PubMed  CAS  Google Scholar 

  71. Simkhovich BZ, Kleinman MT, Kloner RA (2009) Particulate air pollution and coronary heart disease. Curr Opin Cardiol 24:604–609

    Article  PubMed  Google Scholar 

  72. O’Toole TE, Hellmann J, Wheat L, Haberzettl P, Lee J, Conklin DJ, Bhatnagar A, Pope CA 3rd (2010) Episodic exposure to fine particulate air pollution decreases circulating levels of endothelial progenitor cells. Circ Res 107:200–203

    Article  PubMed  CAS  Google Scholar 

  73. Ruckerl R, Phipps RP, Schneider A, Frampton M, Cyrys J, Oberdörster G, Wichmann HE, Peters A (2007) Ultrafine particles and platelet activation in patients with coronary heart disease—results from a prospective panel study. Part Fibre Toxicol 4:1

    Article  PubMed  CAS  Google Scholar 

  74. Rundell KW, Hoffman JR, Caviston R, Bulbulian R, Hollenbach AM (2007) Inhalation of ultrafine and fine particulate matter disrupts systemic vascular function. Inhal Toxicol 19:133–140

    Article  PubMed  CAS  Google Scholar 

  75. Briet M, Collin C, Laurent S, Tan A, Azizi M, Agharazii M, Jeunemaitre X, Alhenc-Gelas F, Boutouyrie P (2007) Endothelial function and chronic exposure to air pollution in normal male subjects. Hypertension 50:970–976

    Article  PubMed  CAS  Google Scholar 

  76. Kunzli N, Jerrett M, Mack WJ, Beckerman B, LaBree L, Gilliland F, Thomas D, Peters J, Hodis HN (2005) Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect 113:201–206

    Article  PubMed  CAS  Google Scholar 

  77. Mills NL, Törnqvist H, Gonzalez MC, Vink E, Robinson SD, Söderberg S, Boon NA, Donaldson K, Sandström T, Blomberg A, Newby DE (2007) Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N Engl J Med 357:1075–1082

    Article  PubMed  CAS  Google Scholar 

  78. Mills NL, Törnqvist H, Robinson SD, Gonzalez M, Darnley K, MacNee W, Boon NA, Donaldson K, Blomberg A, Sandström T, Newby DE (2005) Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation 112:3930–3936

    Article  PubMed  CAS  Google Scholar 

  79. Dubowsky SD, Suh H, Schwartz J, Coull BA, Gold DR (2006) Diabetes, obesity, and hypertension may enhance associations between air pollution and markers of systemic inflammation. Environ Health Perspect 114:992–998

    Article  PubMed  CAS  Google Scholar 

  80. Schneider A, Neas LM, Graff DW, Herbst MC, Cascio WE, Schmitt MT, Buse JB, Peters A, Devlin RB (2010) Association of cardiac and vascular changes with ambient PM2.5 in diabetic individuals. Part Fibre Toxicol 7:14

    Article  PubMed  CAS  Google Scholar 

  81. O’Neill MS, Veves A, Sarnat JA, Zanobetti A, Gold DR, Economides PA, Horton ES, Schwartz J (2007) Air pollution and inflammation in type 2 diabetes: a mechanism for susceptibility. Occup Environ Med 64:373–379

    Article  PubMed  CAS  Google Scholar 

  82. Liu L, Ruddy TD, Dalipaj M, Szyszkowicz M, You H, Poon R, Wheeler A, Dales R (2007) Influence of personal exposure to particulate air pollution on cardiovascular physiology and biomarkers of inflammation and oxidative stress in subjects with diabetes. J Occup Environ Med 49:258–265

    Article  PubMed  Google Scholar 

  83. Jacobs L, Emmerechts J, Mathieu C, Hoylaerts MF, Fierens F, Hoet PH, Nemery B, Nawrot TS (2010) Air pollution related prothrombotic changes in persons with diabetes. Environ Health Perspect 118:191–196

    Article  PubMed  CAS  Google Scholar 

  84. LeBlanc AJ, Cumpston JL, Chen BT, Frazer D, Castranova V, Nurkiewicz TR (2009) Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. J Toxicol Environ Health A 72:1576–1584

    Article  PubMed  CAS  Google Scholar 

  85. Nurkiewicz TR, Porter DW, Barger M, Castranova V, Boegehold MA (2004) Particulate matter exposure impairs systemic microvascular endothelium-dependent dilation. Environ Health Perspect 112:1299–1306

    Article  PubMed  CAS  Google Scholar 

  86. Nurkiewicz TR, Porter DW, Barger M, Millecchia L, Rao KM, Marvar PJ, Hubbs AF, Castranova V, Boegehold MA (2006) Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environ Health Perspect 114:412–419

    Article  PubMed  Google Scholar 

  87. Tamagawa E, Bai N, Morimoto K, Gray C, Mui T, Yatera K, Zhang X, Xing L, Li Y, Laher I, Sin DD, Man SF, van Eeden SF (2008) Particulate matter exposure induces persistent lung inflammation and endothelial dysfunction. Am J Physiol Lung Cell Mol Physiol 295:L79–L85

    Article  PubMed  CAS  Google Scholar 

  88. Nemmar A, Hoet PH, Dinsdale D, Vermylen J, Hoylaerts MF, Nemery B (2003) Diesel exhaust particles in lung acutely enhance experimental peripheral thrombosis. Circulation 107:1202–1208

    Article  PubMed  Google Scholar 

  89. Nemmar A, Nemery B, Hoet PH, Vermylen J, Hoylaerts MF (2003) Pulmonary inflammation and thrombogenicity caused by diesel particles in hamsters: role of histamine. Am J Respir Crit Care Med 168:1366–1372

    Article  PubMed  Google Scholar 

  90. Nemmar A, Al-Salam S, Dhanasekaran S, Sudhadevi M, Ali BH (2009) Pulmonary exposure to diesel exhaust particles promotes cerebral microvessel thrombosis: protective effect of a cysteine prodrug L-2-oxothiazolidine-4-carboxylic acid. Toxicology 263:84–92

    Article  PubMed  CAS  Google Scholar 

  91. Yokota S, Seki T, Naito Y, Tachibana S, Hirabayashi N, Nakasaka T, Ohara N, Kobayashi H (2008) Tracheal instillation of diesel exhaust particles component causes blood and pulmonary neutrophilia and enhances myocardial oxidative stress in mice. J Toxicol Sci 33:609–620

    Article  PubMed  CAS  Google Scholar 

  92. Cascio WE, Cozzi E, Hazarika S, Devlin RB, Henriksen RA, Lust RM, Van Scott MR, Wingard CJ (2007) Cardiac and vascular changes in mice after exposure to ultrafine particulate matter. Inhal Toxicol 19(Suppl 1):67–73

    Article  PubMed  CAS  Google Scholar 

  93. Nurkiewicz TR, Porter DW, Hubbs AF, Cumpston JL, Chen BT, Frazer DG, Castranova V (2008) Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part Fibre Toxicol 5:1

    Article  PubMed  CAS  Google Scholar 

  94. Quan C, Sun Q, Lippmann M, Chen LC (2010) Comparative effects of inhaled diesel exhaust and ambient fine particles on inflammation, atherosclerosis, and vascular dysfunction. Inhal Toxicol 22:738–753

    Article  PubMed  CAS  Google Scholar 

  95. Hansen CS, Sheykhzade M, Møller P, Folkmann JK, Amtorp O, Jonassen T, Loft S (2007) Diesel exhaust particles induce endothelial dysfunction in apoE–/– mice. Toxicol Appl Pharmacol 219:24–32

    Article  PubMed  CAS  Google Scholar 

  96. Chen LC, Nadziejko C (2005) Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice V. CAPs exacerbate aortic plaque development in hyperlipidemic mice. Inhal Toxicol 17:217–224

    Article  PubMed  CAS  Google Scholar 

  97. Sun Q, Wang A, Jin X, Natanzon A, Duquaine D, Brook RD, Aguinaldo JG, Fayad ZA, Fuster V, Lippmann M, Chen LC, Rajagopalan S (2005) Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. J Am Med Assoc 294:3003–3010

    Article  CAS  Google Scholar 

  98. Ying Z, Kampfrath T, Thurston G, Farrar B, Lippmann M, Wang A, Sun Q, Chen LC, Rajagopalan S (2009) Ambient particulates alter vascular function through induction of reactive oxygen and nitrogen species. Toxicol Sci 111:80–88

    Article  PubMed  CAS  Google Scholar 

  99. Goto Y, Hogg JC, Shih CH, Ishii H, Vincent R, van Eeden SF (2004) Exposure to ambient particles accelerates monocyte release from bone marrow in atherosclerotic rabbits. Am J Physiol Lung Cell Mol Physiol 287:L79–L85

    Article  PubMed  CAS  Google Scholar 

  100. Yatera K, Hsieh J, Hogg JC, Tranfield E, Suzuki H, Shih CH, Behzad AR, Vincent R, van Eeden SF (2008) Particulate matter air pollution exposure promotes recruitment of monocytes into atherosclerotic plaques. Am J Physiol Heart Circ Physiol 294:H944–H953

    Article  PubMed  CAS  Google Scholar 

  101. Lei YC, Chen MC, Chan CC, Wang PY, Lee CT, Cheng TJ (2004) Effects of concentrated ambient particles on airway responsiveness and pulmonary inflammation in pulmonary hypertensive rats. Inhal Toxicol 16:785–792

    Article  PubMed  CAS  Google Scholar 

  102. Kodavanti UP, Schladweiler MC, Ledbetter AD, Hauser R, Christiani DC, McGee J, Richards JR, Costa DL (2002) Temporal association between pulmonary and systemic effects of particulate matter in healthy and cardiovascular compromised rats. J Toxicol Environ Health A 65:1545–1569

    Article  PubMed  CAS  Google Scholar 

  103. Ulrich MM, Alink GM, Kumarathasan P, Vincent R, Boere AJ, Cassee FR (2002) Health effects and time course of particulate matter on the cardiopulmonary system in rats with lung inflammation. J Toxicol Environ Health A 65:1571–1595

    Article  PubMed  CAS  Google Scholar 

  104. Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B (2001) Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164:1665–1668

    PubMed  CAS  Google Scholar 

  105. Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414

    Article  PubMed  CAS  Google Scholar 

  106. Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Takenaka S, Oberdörster G (2009) Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 21(Suppl 1):55–60

    Article  PubMed  CAS  Google Scholar 

  107. Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W (2008) Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4:2108–2111

    Article  PubMed  CAS  Google Scholar 

  108. Takenaka S, Karg E, Kreyling WG, Lentner B, Möller W, Behnke-Semmler M, Jennen L, Walch A, Michalke B, Schramel P, Heyder J, Schulz H (2006) Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal Toxicol 18:733–740

    Article  PubMed  CAS  Google Scholar 

  109. Mills NL, Amin N, Robinson SD, Anand A, Davies J, Patel D, de la Fuente JM, Cassee FR, Boon NA, Macnee W, Millar AM, Donaldson K, Newby DE (2006) Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am J Respir Crit Care Med 173:426–431

    Article  PubMed  Google Scholar 

  110. Möller W, Felten K, Sommerer K, Scheuch G, Meyer G, Meyer P, Haussinger K, Kreyling WG (2008) Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am J Respir Crit Care Med 177:426–432

    Article  PubMed  Google Scholar 

  111. Wiebert P, Sanchez-Crespo A, Seitz J, Falk R, Philipson K, Kreyling WG, Möller W, Sommerer K, Larsson S, Svartengren M (2006) Negligible clearance of ultrafine particles retained in healthy and affected human lungs. Eur Respir J 28:286–290

    Article  PubMed  CAS  Google Scholar 

  112. Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10

    Article  PubMed  CAS  Google Scholar 

  113. Clayton TC, Thompson M, Meade TW (2008) Recent respiratory infection and risk of cardiovascular disease: case-control study through a general practice database. Eur Heart J 29:96–103

    Article  PubMed  Google Scholar 

  114. Ghio AJ, Kim C, Devlin RB (2000) Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med 162:981–988

    PubMed  CAS  Google Scholar 

  115. Gong H Jr, Linn WS, Sioutas C, Terrell SL, Clark KW, Anderson KR, Terrell LL (2003) Controlled exposures of healthy and asthmatic volunteers to concentrated ambient fine particles in Los Angeles. Inhal Toxicol 15:305–325

    Article  PubMed  CAS  Google Scholar 

  116. Rivero DH, Soares SR, Lorenzi-Filho G, Saiki M, Godleski JJ, Antonangelo L, Dolhnikoff M, Saldiva PH (2005) Acute cardiopulmonary alterations induced by fine particulate matter of Sao Paulo, Brazil. Toxicol Sci 85:898–905

    Article  PubMed  CAS  Google Scholar 

  117. Rückerl R, Ibald-Mulli A, Koenig W, Schneider A, Woelke G, Cyrys J, Heinrich J, Marder V, Frampton M, Wichmann HE, Peters A (2006) Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Am J Respir Crit Care Med 173:432–441

    Article  PubMed  Google Scholar 

  118. Schwartz J (2001) Air pollution and blood markers of cardiovascular risk. Environ Health Perspect 109(Suppl 3):405–409

    PubMed  CAS  Google Scholar 

  119. Oikonen M, Laaksonen M, Laippala P, Oksaranta O, Lilius EM, Lindgren S, Rantio-Lehtimaki A, Anttinen A, Koski K, Eralinna JP (2003) Ambient air quality and occurrence of multiple sclerosis relapse. Neuroepidemiology 22:95–99

    Article  PubMed  CAS  Google Scholar 

  120. Calderon-Garciduenas L, Reed W, Maronpot RR, Henriquez-Roldan C, Delgado-Chavez R, Calderon-Garciduenas A, Dragustinovis I, Franco-Lira M, Aragon-Flores M, Solt AC, Altenburg M, Torres-Jardon R, Swenberg JA (2004) Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol Pathol 32:650–658

    Article  PubMed  Google Scholar 

  121. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    Article  PubMed  CAS  Google Scholar 

  122. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–1178

    Article  PubMed  CAS  Google Scholar 

  123. Cruts B, van Etten L, Törnqvist H, Blomberg A, Sandström T, Mills NL, Borm PJ (2008) Exposure to diesel exhaust induces changes in EEG in human volunteers. Part Fibre Toxicol 5:4

    Article  PubMed  CAS  Google Scholar 

  124. Ranft U, Schikowski T, Sugiri D, Krutmann J, Kramer U (2009) Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly. Environ Res 109:1004–1011

    Article  PubMed  CAS  Google Scholar 

  125. Suglia SF, Gryparis A, Wright RO, Schwartz J, Wright RJ (2008) Association of black carbon with cognition among children in a prospective birth cohort study. Am J Epidemiol 167:280–286

    Article  PubMed  Google Scholar 

  126. Calderon-Garciduenas L, Mora-Tiscareno A, Ontiveros E, Gomez-Garza G, Barragan-Mejia G, Broadway J, Chapman S, Valencia-Salazar G, Jewells V, Maronpot RR, Henriquez-Roldan C, Perez-Guille B, Torres-Jardon R, Herrit L, Brooks D, Osnaya-Brizuela N, Monroy ME, Gonzalez-Maciel A, Reynoso-Robles R, Villarreal-Calderon R, Solt AC, Engle RW (2008) Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs. Brain Cogn 68:117–127

    Article  PubMed  Google Scholar 

  127. Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB, Kleinman M (2005) Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology 26:133–140

    Article  PubMed  CAS  Google Scholar 

  128. Kleinman MT, Araujo JA, Nel A, Sioutas C, Campbell A, Cong PQ, Li H, Bondy SC (2008) Inhaled ultrafine particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways. Toxicol Lett 178:127–130

    Article  PubMed  CAS  Google Scholar 

  129. Veronesi B, Makwana O, Pooler M, Chen LC (2005) Effects of subchronic exposures to concentrated ambient particles. VII. Degeneration of dopaminergic neurons in Apo E–/– mice. Inhal Toxicol 17:235–241

    Article  PubMed  CAS  Google Scholar 

  130. Sirivelu MP, MohanKumar SM, Wagner JG, Harkema JR, MohanKumar PS (2006) Activation of the stress axis and neurochemical alterations in specific brain areas by concentrated ambient particle exposure with concomitant allergic airway disease. Environ Health Perspect 114:870–874

    Article  PubMed  CAS  Google Scholar 

  131. Gerlofs-Nijland ME, van Berlo D, Cassee FR, Schins RP, Wang K, Campbell A (2010) Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain. Part Fibre Toxicol 7:12

    Article  PubMed  CAS  Google Scholar 

  132. van Berlo D, Albrecht C, Knaapen AM, Cassee FR, Gerlofs-Nijland ME, Kooter IM, Palomero-Gallagher N, Bidmon HJ, van Schooten FJ, Krutmann J, Schins RP (2010) Comparative evaluation of the effects of short-term inhalation exposure to diesel engine exhaust on rat lung and brain. Arch Toxicol 84:553–562

    Article  PubMed  CAS  Google Scholar 

  133. Suzuki T, Oshio S, Iwata M, Saburi H, Odagiri T, Udagawa T, Sugawara I, Umezawa M, Takeda K (2010) In utero exposure to a low concentration of diesel exhaust affects spontaneous locomotor activity and monoaminergic system in male mice. Part Fibre Toxicol 7:7

    Article  PubMed  CAS  Google Scholar 

  134. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    Article  PubMed  Google Scholar 

  135. Rivest S (2001) How circulating cytokines trigger the neural circuits that control the hypothalamic-pituitary-adrenal axis. Psychoneuroendocrinology 26:761–788

    Article  PubMed  CAS  Google Scholar 

  136. Lim HB, Ichinose T, Miyabara Y, Takano H, Kumagai Y, Shimojyo N, Devalia JL, Sagai M (1998) Involvement of superoxide and nitric oxide on airway inflammation and hyperresponsiveness induced by diesel exhaust particles in mice. Free Radic Biol Med 25:635–644

    Article  PubMed  CAS  Google Scholar 

  137. Gurgueira SA, Lawrence J, Coull B, Murthy GG, Gonzalez-Flecha B (2002) Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Perspect 110:749–755

    Article  PubMed  CAS  Google Scholar 

  138. Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44:1689–1699

    Article  PubMed  CAS  Google Scholar 

  139. Xiao GG, Wang M, Li N, Loo JA, Nel AE (2003) Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J Biol Chem 278:50781–50790

    Article  PubMed  CAS  Google Scholar 

  140. Donaldson K, MacNee W (1998) The mechanism of lung injury by PM10. In: Hester RE, Harrison RM (eds) Air pollution and health. The Royal Society of Chemistry, pp 21–32. Online available at http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=644

  141. Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (ed) Oxidative stress. Academic, London, pp 1–8

    Google Scholar 

  142. Knaapen AM, Shi T, Borm PJ, Schins RP (2002) Soluble metals as well as the insoluble particle fraction are involved in cellular DNA damage induced by particulate matter. Mol Cell Biochem 234–235:317–326

    Article  PubMed  Google Scholar 

  143. Shi T, Knaapen AM, Begerow J, Birmili W, Borm PJ, Schins RP (2003) Temporal variation of hydroxyl radical generation and 8-hydroxy-2′-deoxyguanosine formation by coarse and fine particulate matter. Occup Environ Med 60:315–321

    Article  PubMed  CAS  Google Scholar 

  144. Shi T, Duffin R, Borm PJ, Li H, Weishaupt C, Schins RP (2006) Hydroxyl-radical-dependent DNA damage by ambient particulate matter from contrasting sampling locations. Environ Res 101:18–24

    Article  PubMed  CAS  Google Scholar 

  145. Schaumann F, Borm PJ, Herbrich A, Knoch J, Pitz M, Schins RP, Luettig B, Hohlfeld JM, Heinrich J, Krug N (2004) Metal-rich ambient particles (particulate matter 2.5) cause airway inflammation in healthy subjects. Am J Respir Crit Care Med 170:898–903

    Article  PubMed  Google Scholar 

  146. Baulig A, Poirault JJ, Ausset P, Schins R, Shi T, Baralle D, Dorlhene P, Meyer M, Lefevre R, Baeza-Squiban A, Marano F (2004) Physicochemical characteristics and biological activities of seasonal atmospheric particulate matter sampling in two locations of Paris. Environ Sci Technol 38:5985–5992

    Article  PubMed  CAS  Google Scholar 

  147. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199

    Article  PubMed  CAS  Google Scholar 

  148. Wessels A, Van Berlo D, Boots AW, Gerloff K, Scherbart A, Cassee FR, Gerlofs-Nijland ME, Van Schooten FJ, Albrecht C, Schins RP (2011) Oxidative stress and DNA damage responses in rat and mouse lung to inhaled carbon nanoparticles. Nanotoxicology 5:66–78

    Article  PubMed  CAS  Google Scholar 

  149. Donaldson K, Brown DM, Mitchell C, Dineva M, Beswick PH, Gilmour P, MacNee W (1997) Free radical activity of PM10: iron-mediated generation of hydroxyl radicals. Environ Health Perspect 105(Suppl 5):1285–1289

    Article  PubMed  CAS  Google Scholar 

  150. Squadrito GL, Cueto R, Dellinger B, Pryor WA (2001) Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radic Biol Med 31:1132–1138

    Article  PubMed  CAS  Google Scholar 

  151. Baulig A, Sourdeval M, Meyer M, Marano F, Baeza-Squiban A (2003) Biological effects of atmospheric particles on human bronchial epithelial cells. Comparison with diesel exhaust particles. Toxicol In Vitro 17:567–573

    Article  PubMed  CAS  Google Scholar 

  152. Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC, Lawley TJ (1992) HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 99:683–690

    Article  PubMed  CAS  Google Scholar 

  153. Penning TM, Burczynski ME, Hung CF, McCoull KD, Palackal NT, Tsuruda LS (1999) Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones. Chem Res Toxicol 12:1–18

    Article  PubMed  CAS  Google Scholar 

  154. DosReis GA, Borges VM (2003) Role of Fas-ligand induced apoptosis in pulmonary inflammation and injury. Curr Drug Targets Inflamm Allergy 2:161–167

    PubMed  CAS  Google Scholar 

  155. Shepherd VL (1986) The role of the respiratory burst of phagocytes in host defense. Semin Respir Infect 1:99–106

    PubMed  CAS  Google Scholar 

  156. Segal AW (2005) How neutrophils kill microbes. Ann Rev Immunol 23:197–223

    Article  CAS  Google Scholar 

  157. Emmendoerffer A, Hecht M, Boeker T, Mueller M, Heinrich U (2000) Role of inflammation in chemical-induced lung cancer. Toxicol Lett 112–113:185–191

    Article  PubMed  Google Scholar 

  158. Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29:345–350

    Article  PubMed  CAS  Google Scholar 

  159. Shacter E, Weitzman SA (2002) Chronic inflammation and cancer. Oncology 16(217–226):229(discussion 230–212)

    Google Scholar 

  160. Knaapen AM, Gungor N, Schins RP, Borm PJ, Van Schooten FJ (2006) Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis 21:225–236

    Article  PubMed  CAS  Google Scholar 

  161. Sips HJ, Hamers MN (1981) Mechanism of the bactericidal action of myeloperoxidase: increased permeability of the Escherichia coli cell envelope. Infect Immun 31:11–16

    PubMed  CAS  Google Scholar 

  162. Guo FH, De Raeve HR, Rice TW, Stuehr DJ, Thunnissen FB, Erzurum SC (1995) Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc Natl Acad Sci USA 92:7809–7813

    Article  PubMed  CAS  Google Scholar 

  163. Robbins RA, Barnes PJ, Springall DR, Warren JB, Kwon OJ, Buttery LD, Wilson AJ, Geller DA, Polak JM (1994) Expression of inducible nitric oxide in human lung epithelial cells. Biochem Biophys Res Commun 203:209–218

    Article  PubMed  CAS  Google Scholar 

  164. Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42:1075–1081

    Article  PubMed  CAS  Google Scholar 

  165. Wu LL, Chiou CC, Chang PY, Wu JT (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339:1–9

    Article  PubMed  CAS  Google Scholar 

  166. Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370

    Article  PubMed  CAS  Google Scholar 

  167. Schins RP, Knaapen AM (2007) Genotoxicity of poorly soluble particles. Inhal Toxicol 19(Suppl 1):189–198

    Article  PubMed  CAS  Google Scholar 

  168. Schraufstatter I, Hyslop PA, Jackson JH, Cochrane CG (1988) Oxidant-induced DNA damage of target cells. J Clin Invest 82:1040–1050

    Article  PubMed  CAS  Google Scholar 

  169. Chong YC, Heppner GH, Paul LA, Fulton AM (1989) Macrophage-mediated induction of DNA strand breaks in target tumor cells. Cancer Res 49:6652–6657

    PubMed  CAS  Google Scholar 

  170. Driscoll KE, Deyo LC, Carter JM, Howard BW, Hassenbein DG, Bertram TA (1997) Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis 18:423–430

    Article  PubMed  CAS  Google Scholar 

  171. Weitzman SA, Weitberg AB, Clark EP, Stossel TP (1985) Phagocytes as carcinogens: malignant transformation produced by human neutrophils. Science 227:1231–1233

    Article  PubMed  CAS  Google Scholar 

  172. Shacter E, Beecham EJ, Covey JM, Kohn KW, Potter M (1988) Activated neutrophils induce prolonged DNA damage in neighboring cells. Carcinogenesis 9:2297–2304

    Article  PubMed  CAS  Google Scholar 

  173. Knaapen AM, Schins RP, Borm PJ, van Schooten FJ (2005) Nitrite enhances neutrophil-induced DNA strand breakage in pulmonary epithelial cells by inhibition of myeloperoxidase. Carcinogenesis 26:1642–1648

    Article  PubMed  CAS  Google Scholar 

  174. Knaapen AM, Seiler F, Schilderman PA, Nehls P, Bruch J, Schins RP, Borm PJ (1999) Neutrophils cause oxidative DNA damage in alveolar epithelial cells. Free Radic Biol Med 27:234–240

    Article  PubMed  CAS  Google Scholar 

  175. Driscoll KE, Hassenbein DG, Howard BW, Isfort RJ, Cody D, Tindal MH, Suchanek M, Carter JM (1995) Cloning, expression, and functional characterization of rat MIP-2: a neutrophil chemoattractant and epithelial cell mitogen. J Leukoc Biol 58:359–364

    PubMed  CAS  Google Scholar 

  176. Murphy PM (1997) Neutrophil receptors for interleukin-8 and related CXC chemokines. Semin Hematol 34:311–318

    PubMed  CAS  Google Scholar 

  177. Tracey KJ, Cerami A (1993) Tumor necrosis factor, other cytokines and disease. Annu Rev Cell Biol 9:317–343

    Article  PubMed  CAS  Google Scholar 

  178. Vassalli P (1992) The pathophysiology of tumor necrosis factors. Annu Rev Immunol 10:411–452

    Article  PubMed  CAS  Google Scholar 

  179. Chung KF (2001) Cytokines in chronic obstructive pulmonary disease. Eur Respir J Suppl 34:50s–59s

    Article  PubMed  CAS  Google Scholar 

  180. Christman JW, Sadikot RT, Blackwell TS (2000) The role of nuclear factor-κB in pulmonary diseases. Chest 117:1482–1487

    Article  PubMed  CAS  Google Scholar 

  181. Lee JI, Burckart GJ (1998) Nuclear factor κB: important transcription factor and therapeutic target. J Clin Pharmacol 38:981–993

    Article  PubMed  CAS  Google Scholar 

  182. Kleinert H, Euchenhofer C, Ihrig-Biedert I, Forstermann U (1996) In murine 3T3 fibroblasts, different second messenger pathways resulting in the induction of NO synthase II (iNOS) converge in the activation of transcription factor NF-κB. J Biol Chem 271:6039–6044

    Article  PubMed  CAS  Google Scholar 

  183. Schmedtje JF Jr, Ji YS, Liu WL, DuBois RN, Runge MS (1997) Hypoxia induces cyclooxygenase-2 via the NF-κB p65 transcription factor in human vascular endothelial cells. J Biol Chem 272:601–608

    Article  PubMed  CAS  Google Scholar 

  184. Collart MA, Baeuerle P, Vassalli P (1990) Regulation of tumor necrosis factor α transcription in macrophages: involvement of four κB-like motifs and of constitutive and inducible forms of NF-κB. Mol Cell Biol 10:1498–1506

    PubMed  CAS  Google Scholar 

  185. Shakhov AN, Collart MA, Vassalli P, Nedospasov SA, Jongeneel CV (1990) Kappa B-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor α gene in primary macrophages. J Exp Med 171:35–47

    Article  PubMed  CAS  Google Scholar 

  186. Auron PE, Webb AC (1994) Interleukin-1: a gene expression system regulated at multiple levels. Eur Cytokine Netw 5:573–592

    PubMed  CAS  Google Scholar 

  187. Sanceau J, Kaisho T, Hirano T, Wietzerbin J (1995) Triggering of the human interleukin-6 gene by interferon-γ and tumor necrosis factor-α in monocytic cells involves cooperation between interferon regulatory factor-1, NFκB, and Sp1 transcription factors. J Biol Chem 270:27920–27931

    Article  PubMed  CAS  Google Scholar 

  188. Harant H, de Martin R, Andrew PJ, Foglar E, Dittrich C, Lindley IJ (1996) Synergistic activation of interleukin-8 gene transcription by all-trans-retinoic acid and tumor necrosis factor-α involves the transcription factor NFκB. J Biol Chem 271:26954–26961

    Article  PubMed  CAS  Google Scholar 

  189. Roebuck KA, Rahman A, Lakshminarayanan V, Janakidevi K, Malik AB (1995) H2O2 and tumor necrosis factor-α activate intercellular adhesion molecule 1 (ICAM-1) gene transcription through distinct cis-regulatory elements within the ICAM-1 promoter. J Biol Chem 270:18966–18974

    Article  PubMed  CAS  Google Scholar 

  190. Dunn SM, Coles LS, Lang RK, Gerondakis S, Vadas MA, Shannon MF (1994) Requirement for nuclear factor (NF)-κB p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood 83:2469–2479

    PubMed  CAS  Google Scholar 

  191. Israel A, Le Bail O, Hatat D, Piette J, Kieran M, Logeat F, Wallach D, Fellous M, Kourilsky P (1989) TNF stimulates expression of mouse MHC class I genes by inducing an NF κB-like enhancer binding activity which displaces constitutive factors. EMBO J 8:3793–3800

    PubMed  CAS  Google Scholar 

  192. Osborn L, Kunkel S, Nabel GJ (1989) Tumor necrosis factor α and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor κB. Proc Natl Acad Sci USA 86:2336–2340

    Article  PubMed  CAS  Google Scholar 

  193. Ishii H, Fujii T, Hogg JC, Hayashi S, Mukae H, Vincent R, van Eeden SF (2004) Contribution of IL-1 β and TNF-α to the initiation of the peripheral lung response to atmospheric particulates (PM10). Am J Physiol Lung Cell Mol Physiol 287:L176–L183

    Article  PubMed  CAS  Google Scholar 

  194. Jimenez LA, Drost EM, Gilmour PS, Rahman I, Antonicelli F, Ritchie H, MacNee W, Donaldson K (2002) PM(10)-exposed macrophages stimulate a proinflammatory response in lung epithelial cells via TNF-α. Am J Physiol Lung Cell Mol Physiol 282:L237–L248

    PubMed  CAS  Google Scholar 

  195. Janssen-Heininger YM, Macara I, Mossman BT (1999) Cooperativity between oxidants and tumor necrosis factor in the activation of nuclear factor (NF)-κB: requirement of Ras/mitogen-activated protein kinases in the activation of NF-κB by oxidants. Am J Respir Cell Mol Biol 20:942–952

    PubMed  CAS  Google Scholar 

  196. Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER (1982) Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis 126:332–337

    PubMed  CAS  Google Scholar 

  197. Laing S, Wang G, Briazova T, Zhang C, Wang A, Zheng Z, Gow A, Chen AF, Rajagopalan S, Chen LC, Sun Q, Zhang K (2010) Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Physiol Cell Physiol 299:C736–C749

    Article  PubMed  CAS  Google Scholar 

  198. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270

    Article  PubMed  CAS  Google Scholar 

  199. Kilroe-Smith TA, Webster I, Van Drimmelen M, Marasas L (1973) An insoluble fibrogenic factor in macrophages from guinea pigs exposed to silica. Environ Res 6:298–305

    Article  PubMed  CAS  Google Scholar 

  200. Rabinovitch M, De Stefano MJ (1973) Particle recognition by cultivated macrophages. J Immunol 110:695–701

    PubMed  CAS  Google Scholar 

  201. Bowden DH (1976) The pulmonary macrophage. Environ Health Perspect 16:55–60

    Article  PubMed  CAS  Google Scholar 

  202. Bowden DH (1984) The alveolar macrophage. Environ Health Perspect 55:327–341

    Article  PubMed  CAS  Google Scholar 

  203. Lindbom J, Gustafsson M, Blomqvist G, Dahl A, Gudmundsson A, Swietlicki E, Ljungman AG (2006) Exposure to wear particles generated from studded tires and pavement induces inflammatory cytokine release from human macrophages. Chem Res Toxicol 19:521–530

    Article  PubMed  CAS  Google Scholar 

  204. den Hartigh LJ, Lame MW, Ham W, Kleeman MJ, Tablin F, Wilson DW (2010) Endotoxin and polycyclic aromatic hydrocarbons in ambient fine particulate matter from Fresno, California initiate human monocyte inflammatory responses mediated by reactive oxygen species. Toxicol In Vitro 24:1993–2002

    Article  CAS  Google Scholar 

  205. Sakamoto N, Hayashi S, Mukae H, Vincent R, Hogg JC, van Eeden SF (2009) Effect of atorvastatin on PM10-induced cytokine production by human alveolar macrophages and bronchial epithelial cells. Int J Toxicol 28:17–23

    Article  PubMed  CAS  Google Scholar 

  206. Kocbach A, Namork E, Schwarze PE (2008) Pro-inflammatory potential of wood smoke and traffic-derived particles in a monocytic cell line. Toxicology 247:123–132

    Article  PubMed  CAS  Google Scholar 

  207. Brown DM, Donaldson K, Stone V (2004) Effects of PM10 in human peripheral blood monocytes and J774 macrophages. Respir Res 5:29

    Article  PubMed  CAS  Google Scholar 

  208. Brown DM, Hutchison L, Donaldson K, Stone V (2007) The effects of PM10 particles and oxidative stress on macrophages and lung epithelial cells: modulating effects of calcium-signaling antagonists. Am J Physiol Lung Cell Mol Physiol 292:L1444–L1451

    Article  PubMed  CAS  Google Scholar 

  209. Alexis NE, Lay JC, Zeman K, Bennett WE, Peden DB, Soukup JM, Devlin RB, Becker S (2006) Biological material on inhaled coarse fraction particulate matter activates airway phagocytes in vivo in healthy volunteers. J Allergy Clin Immunol 117:1396–1403

    Article  PubMed  CAS  Google Scholar 

  210. Hofer TP, Bitterle E, Beck-Speier I, Maier KL, Frankenberger M, Heyder J, Ziegler-Heitbrock L (2004) Diesel exhaust particles increase LPS-stimulated COX-2 expression and PGE2 production in human monocytes. J Leukoc Biol 75:856–864

    Article  PubMed  CAS  Google Scholar 

  211. Vogel CF, Sciullo E, Wong P, Kuzmicky P, Kado N, Matsumura F (2005) Induction of proinflammatory cytokines and C-reactive protein in human macrophage cell line U937 exposed to air pollution particulates. Environ Health Perspect 113:1536–1541

    Article  PubMed  CAS  Google Scholar 

  212. Beck-Speier I, Dayal N, Karg E, Maier KL, Schumann G, Schulz H, Semmler M, Takenaka S, Stettmaier K, Bors W, Ghio A, Samet JM, Heyder J (2005) Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particles. Free Radic Biol Med 38:1080–1092

    Article  PubMed  CAS  Google Scholar 

  213. Mondal K, Stephen Haskill J, Becker S (2000) Adhesion and pollution particle-induced oxidant generation is neither necessary nor sufficient for cytokine induction in human alveolar macrophages. Am J Respir Cell Mol Biol 22:200–208

    PubMed  CAS  Google Scholar 

  214. Pozzi R, De Berardis B, Paoletti L, Guastadisegni C (2003) Inflammatory mediators induced by coarse (PM2.5-10) and fine (PM2.5) urban air particles in RAW 264.7 cells. Toxicology 183:243–254

    Article  PubMed  CAS  Google Scholar 

  215. Pozzi R, De Berardis B, Paoletti L, Guastadisegni C (2005) Winter urban air particles from Rome (Italy): effects on the monocytic-macrophagic RAW 264.7 cell line. Environ Res 99:344–354

    Article  PubMed  CAS  Google Scholar 

  216. Dick CA, Brown DM, Donaldson K, Stone V (2003) The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol 15:39–52

    Article  PubMed  CAS  Google Scholar 

  217. Soukup JM, Becker S (2001) Human alveolar macrophage responses to air pollution particulates are associated with insoluble components of coarse material, including particulate endotoxin. Toxicol Appl Pharmacol 171:20–26

    Article  PubMed  CAS  Google Scholar 

  218. Becker S, Mundandhara S, Devlin RB, Madden M (2005) Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: further mechanistic studies. Toxicol Appl Pharmacol 207:269–275

    Article  PubMed  CAS  Google Scholar 

  219. Jalava PI, Salonen RO, Pennanen AS, Sillanpää M, Hälinen AI, Happo MS, Hillamo R, Brunekreef B, Katsouyanni K, Sunyer J, Hirvonen MR (2007) Heterogeneities in inflammatory and cytotoxic responses of RAW 264.7 macrophage cell line to urban air coarse, fine, and ultrafine particles from six European sampling campaigns. Inhal Toxicol 19:213–225

    Article  PubMed  CAS  Google Scholar 

  220. Happo MS, Salonen RO, Hälinen AI, Jalava PI, Pennanen AS, Dormans JA, Gerlofs-Nijland ME, Cassee FR, Kosma VM, Sillanpää M, Hillamo R, Hirvonen MR (2010) Inflammation and tissue damage in mouse lung by single and repeated dosing of urban air coarse and fine particles collected from six European cities. Inhal Toxicol 22:402–416

    Article  PubMed  CAS  Google Scholar 

  221. Ishii H, Hayashi S, Hogg JC, Fujii T, Goto Y, Sakamoto N, Mukae H, Vincent R, van Eeden SF (2005) Alveolar macrophage-epithelial cell interaction following exposure to atmospheric particles induces the release of mediators involved in monocyte mobilization and recruitment. Respir Res 6:87

    Article  PubMed  CAS  Google Scholar 

  222. Kocbach A, Herseth JI, Lag M, Refsnes M, Schwarze PE (2008) Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures. Toxicol Appl Pharmacol 232:317–326

    Article  PubMed  CAS  Google Scholar 

  223. Becker S, Soukup J (2003) Coarse(PM(2.5-10)), fine(PM(2.5)), and ultrafine air pollution particles induce/increase immune costimulatory receptors on human blood-derived monocytes but not on alveolar macrophages. J Toxicol Environ Health A 66:847–859

    Article  PubMed  CAS  Google Scholar 

  224. Müller L, Riediker M, Wick P, Mohr M, Gehr P, Rothen-Rutishauser B (2010) Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J R Soc Interface 7(Suppl 1):S27–S40

    Article  PubMed  CAS  Google Scholar 

  225. Ohyama M, Otake T, Adachi S, Kobayashi T, Morinaga K (2007) A comparison of the production of reactive oxygen species by suspended particulate matter and diesel exhaust particles with macrophages. Inhal Toxicol 19(Suppl 1):157–160

    Article  PubMed  CAS  Google Scholar 

  226. Zhang Y, Schauer JJ, Shafer MM, Hannigan MP, Dutton SJ (2008) Source apportionment of in vitro reactive oxygen species bioassay activity from atmospheric particulate matter. Environ Sci Technol 42:7502–7509

    Article  PubMed  CAS  Google Scholar 

  227. Huang YC, Soukup J, Harder S, Becker S (2003) Mitochondrial oxidant production by a pollutant dust and NO-mediated apoptosis in human alveolar macrophage. Am J Physiol Cell Physiol 284:C24–C32

    PubMed  CAS  Google Scholar 

  228. Becker S, Soukup JM, Gallagher JE (2002) Differential particulate air pollution induced oxidant stress in human granulocytes, monocytes and alveolar macrophages. Toxicol In Vitro 16:209–218

    Article  PubMed  CAS  Google Scholar 

  229. Aam BB, Fonnum F (2007) Carbon black particles increase reactive oxygen species formation in rat alveolar macrophages in vitro. Arch Toxicol 81:441–446

    Article  PubMed  CAS  Google Scholar 

  230. Chauhan V, Breznan D, Goegan P, Nadeau D, Karthikeyan S, Brook JR, Vincent R (2004) Effects of ambient air particles on nitric oxide production in macrophage cell lines. Cell Biol Toxicol 20:221–239

    Article  PubMed  CAS  Google Scholar 

  231. Lindbom J, Gustafsson M, Blomqvist G, Dahl A, Gudmundsson A, Swietlicki E, Ljungman AG (2007) Wear particles generated from studded tires and pavement induces inflammatory reactions in mouse macrophage cells. Chem Res Toxicol 20:937–946

    Article  PubMed  CAS  Google Scholar 

  232. Salonen RO, Halinen AI, Pennanen AS, Hirvonen MR, Sillanpää M, Hillamo R, Shi T, Borm P, Sandell E, Koskentalo T, Aarnio P (2004) Chemical and in vitro toxicologic characterization of wintertime and springtime urban-air particles with an aerodynamic diameter below 10 microm in Helsinki. Scand J Work Environ Health 30(Suppl 2):80–90

    PubMed  CAS  Google Scholar 

  233. Diociaiuti M, Balduzzi M, De Berardis B, Cattani G, Stacchini G, Ziemacki G, Marconi A, Paoletti L (2001) The two PM(2.5) (fine) and PM(2.5-10) (coarse) fractions: evidence of different biological activity. Environ Res 86:254–262

    Article  PubMed  CAS  Google Scholar 

  234. Becker S, Soukup JM (1998) Decreased CD11b expression, phagocytosis, and oxidative burst in urban particulate pollution-exposed human monocytes and alveolar macrophages. J Toxicol Environ Health A 55:455–477

    Article  PubMed  CAS  Google Scholar 

  235. Kleinman MT, Sioutas C, Chang MC, Boere AJ, Cassee FR (2003) Ambient fine and coarse particle suppression of alveolar macrophage functions. Toxicol Lett 137:151–158

    Article  PubMed  CAS  Google Scholar 

  236. Yang HM, Barger MW, Castranova V, Ma JK, Yang JJ, Ma JY (1999) Effects of diesel exhaust particles (DEP), carbon black, and silica on macrophage responses to lipopolysaccharide: evidence of DEP suppression of macrophage activity. J Toxicol Environ Health A 58:261–278

    Article  PubMed  CAS  Google Scholar 

  237. Amakawa K, Terashima T, Matsuzaki T, Matsumaru A, Sagai M, Yamaguchi K (2003) Suppressive effects of diesel exhaust particles on cytokine release from human and murine alveolar macrophages. Exp Lung Res 29:149–164

    Article  PubMed  CAS  Google Scholar 

  238. Möller W, Brown DM, Kreyling WG, Stone V (2005) Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium. Part Fibre Toxicol 2:7

    Article  PubMed  CAS  Google Scholar 

  239. Huang YC, Li Z, Harder SD, Soukup JM (2004) Apoptotic and inflammatory effects induced by different particles in human alveolar macrophages. Inhal Toxicol 16:863–878

    Article  PubMed  CAS  Google Scholar 

  240. Lentsch AB, Shanley TP, Sarma V, Ward PA (1997) In vivo suppression of NF-κB and preservation of IκBα by interleukin-10 and interleukin-13. J Clin Invest 100:2443–2448

    Article  PubMed  CAS  Google Scholar 

  241. Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, Donaldson K (2007) The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 64:609–615

    Article  PubMed  CAS  Google Scholar 

  242. Baeza-Squiban A, Bonvallot V, Boland S, Marano F (1999) Diesel exhaust particles increase NF-κB DNA binding activity and c-FOS proto-oncogene expression in human bronchial epithelial cells. Toxicol In Vitro 13:817–822

    Article  PubMed  CAS  Google Scholar 

  243. Boland S, Bonvallot V, Fournier T, Baeza-Squiban A, Aubier M, Marano F (2000) Mechanisms of GM-CSF increase by diesel exhaust particles in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 278:L25–L32

    PubMed  CAS  Google Scholar 

  244. Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Jibiki I, Takizawa H, Kudoh S, Horie T (2000) Diesel exhaust particles activate p38 MAP kinase to produce interleukin 8 and RANTES by human bronchial epithelial cells and N-acetylcysteine attenuates p38 MAP kinase activation. Am J Respir Crit Care Med 161:280–285

    PubMed  CAS  Google Scholar 

  245. Knaapen AM, Schins RP, Steinfartz Y, Höhr D, Dunemann L, Borm PJ (2000) Ambient particulate matter induces oxidative DNA damage in lung epithelial cells. Inhal Toxicol 12:125–132

    Article  CAS  Google Scholar 

  246. Don Porto Carero A, Hoet PH, Verschaeve L, Schoeters G, Nemery B (2001) Genotoxic effects of carbon black particles, diesel exhaust particles, and urban air particulates and their extracts on a human alveolar epithelial cell line (A549) and a human monocytic cell line (THP-1). Environ Mol Mutagen 37:155–163

    Article  PubMed  CAS  Google Scholar 

  247. Prahalad AK, Inmon J, Dailey LA, Madden MC, Ghio AJ, Gallagher JE (2001) Air pollution particles mediated oxidative DNA base damage in a cell free system and in human airway epithelial cells in relation to particulate metal content and bioreactivity. Chem Res Toxicol 14:879–887

    Article  PubMed  CAS  Google Scholar 

  248. Danielsen PH, Loft S, Møller P (2008) DNA damage and cytotoxicity in type II lung epithelial (A549) cell cultures after exposure to diesel exhaust and urban street particles. Part Fibre Toxicol 5:6

    Article  PubMed  CAS  Google Scholar 

  249. Dellinger B, Pryor WA, Cueto R, Squadrito GL, Hegde V, Deutsch WA (2001) Role of free radicals in the toxicity of airborne fine particulate matter. Chem Res Toxicol 14:1371–1377

    Article  PubMed  CAS  Google Scholar 

  250. Ghio AJ, Carter JD, Dailey LA, Devlin RB, Samet JM (1999) Respiratory epithelial cells demonstrate lactoferrin receptors that increase after metal exposure. Am J Physiol 276:L933–L940

    PubMed  CAS  Google Scholar 

  251. Albrecht C, Schins RP, Hohr D, Becker A, Shi T, Knaapen AM, Borm PJ (2004) Inflammatory time course after quartz instillation: role of tumor necrosis factor-α and particle surface. Am J Respir Cell Mol Biol 31:292–301

    Article  PubMed  CAS  Google Scholar 

  252. Timblin C, BeruBe K, Churg A, Driscoll K, Gordon T, Hemenway D, Walsh E, Cummins AB, Vacek P, Mossman B (1998) Ambient particulate matter causes activation of the c-jun kinase/stress-activated protein kinase cascade and DNA synthesis in lung epithelial cells. Cancer Res 58:4543–4547

    PubMed  CAS  Google Scholar 

  253. Tamaoki J, Isono K, Takeyama K, Tagaya E, Nakata J, Nagai A (2004) Ultrafine carbon black particles stimulate proliferation of human airway epithelium via EGF receptor-mediated signaling pathway. Am J Physiol Lung Cell Mol Physiol 287:L1127–L1133

    Article  PubMed  CAS  Google Scholar 

  254. Sydlik U, Bierhals K, Soufi M, Abel J, Schins RP, Unfried K (2006) Ultrafine carbon particles induce apoptosis and proliferation in rat lung epithelial cells via specific signaling pathways both using EGF-R. Am J Physiol Lung Cell Mol Physiol 291:L725–L733

    Article  PubMed  CAS  Google Scholar 

  255. Rumelhard M, Ramgolam K, Hamel R, Marano F, Baeza-Squiban A (2007) Expression and role of EGFR ligands induced in airway cells by PM2.5 and its components. Eur Respir J 30:1064–1073

    Article  PubMed  CAS  Google Scholar 

  256. Baulig A, Blanchet S, Rumelhard M, Lacroix G, Marano F, Baeza-Squiban A (2007) Fine urban atmospheric particulate matter modulates inflammatory gene and protein expression in human bronchial epithelial cells. Front Biosci 12:771–782

    Article  PubMed  CAS  Google Scholar 

  257. Blanchet S, Ramgolam K, Baulig A, Marano F, Baeza-Squiban A (2004) Fine particulate matter induces amphiregulin secretion by bronchial epithelial cells. Am J Respir Cell Mol Biol 30:421–427

    Article  PubMed  CAS  Google Scholar 

  258. Camatini M, Corvaja V, Pezzolato E, Mantecca P, Gualtieri M (2012) PM10-biogenic fraction drives the seasonal variation of proinflammatory response in A549 cells. Environ Toxicol 27(2):63–73

    Article  PubMed  CAS  Google Scholar 

  259. Baulig A, Singh S, Marchand A, Schins R, Barouki R, Garlatti M, Marano F, Baeza-Squiban A (2009) Role of Paris PM(2.5) components in the pro-inflammatory response induced in airway epithelial cells. Toxicology 261:126–135

    Article  PubMed  CAS  Google Scholar 

  260. Jimenez LA, Thompson J, Brown DA, Rahman I, Antonicelli F, Duffin R, Drost EM, Hay RT, Donaldson K, MacNee W (2000) Activation of NF-κB by PM(10) occurs via an iron-mediated mechanism in the absence of IκB degradation. Toxicol Appl Pharmacol 166:101–110

    Article  PubMed  CAS  Google Scholar 

  261. Fujii T, Hogg JC, Keicho N, Vincent R, Van Eeden SF, Hayashi S (2003) Adenoviral E1A modulates inflammatory mediator expression by lung epithelial cells exposed to PM10. Am J Physiol Lung Cell Mol Physiol 284:L290–L297

    PubMed  CAS  Google Scholar 

  262. Gilmour PS, Rahman I, Hayashi S, Hogg JC, Donaldson K, MacNee W (2001) Adenoviral E1A primes alveolar epithelial cells to PM(10)-induced transcription of interleukin-8. Am J Physiol Lung Cell Mol Physiol 281:L598–L606

    PubMed  CAS  Google Scholar 

  263. Devalia JL, Bayram H, Abdelaziz MM, Sapsford RJ, Davies RJ (1999) Differences between cytokine release from bronchial epithelial cells of asthmatic patients and non-asthmatic subjects: effect of exposure to diesel exhaust particles. Int Arch Allergy Immunol 118:437–439

    Article  PubMed  CAS  Google Scholar 

  264. Gursinsky T, Ruhs S, Friess U, Diabate S, Krug HF, Silber RE, Simm A (2006) Air pollution-associated fly ash particles induce fibrotic mechanisms in primary fibroblasts. Biol Chem 387:1411–1420

    Article  PubMed  CAS  Google Scholar 

  265. Deng F, Guo X, Liu H, Fang X, Yang M, Chen W (2007) Effects of dust storm PM2.5 on cell proliferation and cell cycle in human lung fibroblasts. Toxicol In Vitro 21:632–638

    Article  PubMed  CAS  Google Scholar 

  266. Lindroos PM, Coin PG, Badgett A, Morgan DL, Bonner JC (1997) Alveolar macrophages stimulated with titanium dioxide, chrysotile asbestos, and residual oil fly ash upregulate the PDGF receptor-α on lung fibroblasts through an IL-1β-dependent mechanism. Am J Respir Cell Mol Biol 16:283–292

    PubMed  CAS  Google Scholar 

  267. Bonner JC, Rice AB, Lindroos PM, O’Brien PO, Dreher KL, Rosas I, Alfaro-Moreno E, Osornio-Vargas AR (1998) Induction of the lung myofibroblast PDGF receptor system by urban ambient particles from Mexico City. Am J Respir Cell Mol Biol 19:672–680

    PubMed  CAS  Google Scholar 

  268. Kim H, Liu X, Kobayashi T, Kohyama T, Wen FQ, Romberger DJ, Conner H, Gilmour PS, Donaldson K, MacNee W, Rennard SI (2003) Ultrafine carbon black particles inhibit human lung fibroblast-mediated collagen gel contraction. Am J Respir Cell Mol Biol 28:111–121

    Article  PubMed  CAS  Google Scholar 

  269. Kiama SG, Cochand L, Karlsson L, Nicod LP, Gehr P (2001) Evaluation of phagocytic activity in human monocyte-derived dendritic cells. J Aerosol Med 14:289–299

    Article  PubMed  CAS  Google Scholar 

  270. Porter M, Karp M, Killedar S, Bauer SM, Guo J, Williams D, Breysse P, Georas SN, Williams MA (2007) Diesel-enriched particulate matter functionally activates human dendritic cells. Am J Respir Cell Mol Biol 37:706–719

    Article  PubMed  CAS  Google Scholar 

  271. Williams MA, Porter M, Horton M, Guo J, Roman J, Williams D, Breysse P, Georas SN (2007) Ambient particulate matter directs nonclassic dendritic cell activation and a mixed TH1/TH2-like cytokine response by naive CD4+ T cells. J Allergy Clin Immunol 119:488–497

    Article  PubMed  CAS  Google Scholar 

  272. Braun A, Bewersdorff M, Lintelmann J, Matuschek G, Jakob T, Göttlicher M, Schober W, Buters JT, Behrendt H, Mempel M (2010) Differential impact of diesel particle composition on pro-allergic dendritic cell function. Toxicol Sci 113:85–94

    Article  PubMed  CAS  Google Scholar 

  273. Chan RC, Wang M, Li N, Yanagawa Y, Onoe K, Lee JJ, Nel AE (2006) Pro-oxidative diesel exhaust particle chemicals inhibit LPS-induced dendritic cell responses involved in T-helper differentiation. J Allergy Clin Immunol 118:455–465

    Article  PubMed  CAS  Google Scholar 

  274. Viera L, Chen K, Nel A, Lloret MG (2009) The impact of air pollutants as an adjuvant for allergic sensitization and asthma. Curr Allergy Asthma Rep 9:327–333

    Article  PubMed  CAS  Google Scholar 

  275. Williams MA, Rangasamy T, Bauer SM, Killedar S, Karp M, Kensler TW, Yamamoto M, Breysse P, Biswal S, Georas SN (2008) Disruption of the transcription factor Nrf2 promotes pro-oxidative dendritic cells that stimulate Th2-like immunoresponsiveness upon activation by ambient particulate matter. J Immunol 181:4545–4559

    PubMed  CAS  Google Scholar 

  276. Koike E, Takano H, Inoue K, Yanagisawa R, Kobayashi T (2008) Carbon black nanoparticles promote the maturation and function of mouse bone marrow-derived dendritic cells. Chemosphere 73:371–376

    Article  PubMed  CAS  Google Scholar 

  277. Bleck B, Tse DB, Jaspers I, Curotto de Lafaille MA, Reibman J (2006) Diesel exhaust particle-exposed human bronchial epithelial cells induce dendritic cell maturation. J Immunol 176:7431–7437

    PubMed  CAS  Google Scholar 

  278. Ying S, O’Connor B, Ratoff J, Meng Q, Mallett K, Cousins D, Robinson D, Zhang G, Zhao J, Lee TH, Corrigan C (2005) Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 174:8183–8190

    PubMed  CAS  Google Scholar 

  279. Bleck B, Tse DB, Curotto de Lafaille MA, Zhang F, Reibman J (2008) Diesel exhaust particle-exposed human bronchial epithelial cells induce dendritic cell maturation and polarization via thymic stromal lymphopoietin. J Clin Immunol 28:147–156

    Article  PubMed  Google Scholar 

  280. Li R, Ning Z, Cui J, Khalsa B, Ai L, Takabe W, Beebe T, Majumdar R, Sioutas C, Hsiai T (2009) Ultrafine particles from diesel engines induce vascular oxidative stress via JNK activation. Free Radic Biol Med 46:775–782

    Article  PubMed  CAS  Google Scholar 

  281. Mo Y, Wan R, Chien S, Tollerud DJ, Zhang Q (2009) Activation of endothelial cells after exposure to ambient ultrafine particles: the role of NADPH oxidase. Toxicol Appl Pharmacol 236:183–193

    Article  PubMed  CAS  Google Scholar 

  282. Wei H, Wei D, Yi S, Zhang F, Ding W (2011) Oxidative stress induced by urban fine particles in cultured EA.hy926 cells. Hum Exp Toxicol 30:579–590

    Article  CAS  Google Scholar 

  283. Totlandsdal AI, Refsnes M, Skomedal T, Osnes JB, Schwarze PE, Lag M (2008) Particle-induced cytokine responses in cardiac cell cultures―the effect of particles versus soluble mediators released by particle-exposed lung cells. Toxicol Sci 106:233–241

    Article  PubMed  CAS  Google Scholar 

  284. Qu S, Liberda EN, Qu Q, Chen LC (2010) In vitro assessment of the inflammatory response of respiratory endothelial cells exposed to particulate matter. J Toxicol Environ Health A 73:1113–1121

    Article  PubMed  CAS  Google Scholar 

  285. Yamawaki H, Iwai N (2006) Mechanisms underlying nano-sized air-pollution-mediated progression of atherosclerosis: carbon black causes cytotoxic injury/inflammation and inhibits cell growth in vascular endothelial cells. Circ J 70:129–140

    Article  PubMed  CAS  Google Scholar 

  286. Alfaro-Moreno E, Lopez-Marure R, Montiel-Davalos A, Symonds P, Osornio-Vargas AR, Rosas I, Clifford Murray J (2007) E-Selectin expression in human endothelial cells exposed to PM10: the role of endotoxin and insoluble fraction. Environ Res 103:221–228

    Article  PubMed  CAS  Google Scholar 

  287. Kristovich R, Knight DA, Long JF, Williams MV, Dutta PK, Waldman WJ (2004) Macrophage-mediated endothelial inflammatory responses to airborne particulates: impact of particulate physicochemical properties. Chem Res Toxicol 17:1303–1312

    Article  PubMed  CAS  Google Scholar 

  288. Montiel-Davalos A, Alfaro-Moreno E, Lopez-Marure R (2007) PM2.5 and PM10 induce the expression of adhesion molecules and the adhesion of monocytic cells to human umbilical vein endothelial cells. Inhal Toxicol 19(Suppl 1):91–98

    Article  PubMed  CAS  Google Scholar 

  289. Li R, Ning Z, Cui J, Yu F, Sioutas C, Hsiai T (2010) Diesel exhaust particles modulate vascular endothelial cell permeability: implication of ZO-1 expression. Toxicol Lett 197:163–168

    Article  PubMed  CAS  Google Scholar 

  290. Wang T, Chiang ET, Moreno-Vinasco L, Lang GD, Pendyala S, Samet JM, Geyh AS, Breysse PN, Chillrud SN, Natarajan V, Garcia JG (2010) Particulate matter disrupts human lung endothelial barrier integrity via ROS- and p38 MAPK-dependent pathways. Am J Respir Cell Mol Biol 42:442–449

    Article  PubMed  CAS  Google Scholar 

  291. Knaapen AM, den Hartog GJ, Bast A, Borm PJ (2001) Ambient particulate matter induces relaxation of rat aortic rings in vitro. Hum Exp Toxicol 20:259–265

    Article  PubMed  CAS  Google Scholar 

  292. Miller MR, Borthwick SJ, Shaw CA, McLean SG, McClure D, Mills NL, Duffin R, Donaldson K, Megson IL, Hadoke PW, Newby DE (2009) Direct impairment of vascular function by diesel exhaust particulate through reduced bioavailability of endothelium-derived nitric oxide induced by superoxide free radicals. Environ Health Perspect 117:611–616

    PubMed  CAS  Google Scholar 

  293. Block ML, Wu X, Pei Z, Li G, Wang T, Qin L, Wilson B, Yang J, Hong JS, Veronesi B (2004) Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J 18:1618–1620

    PubMed  CAS  Google Scholar 

  294. Hartz AM, Bauer B, Block ML, Hong JS, Miller DS (2008) Diesel exhaust particles induce oxidative stress, proinflammatory signaling, and P-glycoprotein up-regulation at the blood-brain barrier. FASEB J 22:2723–2733

    Article  PubMed  CAS  Google Scholar 

  295. Sama P, Long TC, Hester S, Tajuba J, Parker J, Chen LC, Veronesi B (2007) The cellular and genomic response of an immortalized microglia cell line (BV2) to concentrated ambient particulate matter. Inhal Toxicol 19:1079–1087

    Article  PubMed  CAS  Google Scholar 

  296. Shin JA, Lee EJ, Seo SM, Kim HS, Kang JL, Park EM (2010) Nanosized titanium dioxide enhanced inflammatory responses in the septic brain of mouse. Neuroscience 165:445–454

    Article  PubMed  CAS  Google Scholar 

  297. Campbell A, Araujo JA, Li H, Sioutas C, Kleinman M (2009) Particulate matter induced enhancement of inflammatory markers in the brains of apolipoprotein E knockout mice. J Nanosci Nanotechnol 9:5099–5104

    Article  PubMed  CAS  Google Scholar 

  298. Harkema JR, Wagner JG, Kaminski NE, Morishita M, Keeler GJ, McDonald JD, Barrett EG (2009) Effects of concentrated ambient particles and diesel engine exhaust on allergic airway disease in Brown Norway rats. Res Rep Health Eff Inst 145:5–55

    PubMed  CAS  Google Scholar 

  299. Mills NL, Robinson SD, Fokkens PH, Leseman DL, Miller MR, Anderson D, Freney EJ, Heal MR, Donovan RJ, Blomberg A, Sandström T, MacNee W, Boon NA, Donaldson K, Newby DE, Cassee FR (2008) Exposure to concentrated ambient particles does not affect vascular function in patients with coronary heart disease. Environ Health Perspect 116:709–715

    Article  PubMed  CAS  Google Scholar 

  300. Stringer B, Imrich A, Kobzik L (1996) Lung epithelial cell (A549) interaction with unopsonized environmental particulates: quantitation of particle-specific binding and IL-8 production. Exp Lung Res 22:495–508

    Article  PubMed  CAS  Google Scholar 

  301. Barlow PG, Brown DM, Donaldson K, MacCallum J, Stone V (2008) Reduced alveolar macrophage migration induced by acute ambient particle (PM10) exposure. Cell Biol Toxicol 24:243–252

    Article  PubMed  CAS  Google Scholar 

  302. Gilmour MI, McGee J, Duvall RM, Dailey L, Daniels M, Boykin E, Cho SH, Doerfler D, Gordon T, Devlin RB (2007) Comparative toxicity of size-fractionated airborne particulate matter obtained from different cities in the United States. Inhal Toxicol 19(Suppl 1):7–16

    Article  PubMed  CAS  Google Scholar 

  303. Rao KM, Ma JY, Meighan T, Barger MW, Pack D, Vallyathan V (2005) Time course of gene expression of inflammatory mediators in rat lung after diesel exhaust particle exposure. Environ Health Perspect 113:612–617

    Article  PubMed  CAS  Google Scholar 

  304. Marano F, Boland S, Bonvallot V, Baulig A, Baeza-Squiban A (2002) Human airway epithelial cells in culture for studying the molecular mechanisms of the inflammatory response triggered by diesel exhaust particles. Cell Biol Toxicol 18:315–320

    Article  PubMed  CAS  Google Scholar 

  305. Salnikow K, Li X, Lippmann M (2004) Effect of nickel and iron co-exposure on human lung cells. Toxicol Appl Pharmacol 196:258–265

    Article  PubMed  CAS  Google Scholar 

  306. Zanchi AC, Saiki M, Saldiva PH, Barros HM, Rhoden CR (2010) Hippocampus lipid peroxidation induced by residual oil fly ash intranasal instillation versus habituation to the open field. Inhal Toxicol 22:84–88

    Article  PubMed  CAS  Google Scholar 

  307. Steerenberg PA, Withagen CE, Dormans JA, van Dalen WJ, van Loveren H, Casee FR (2003) Adjuvant activity of various diesel exhaust and ambient particles in two allergic models. J Toxicol Environ Health A 66:1421–1439

    Article  PubMed  CAS  Google Scholar 

  308. Smith KR, Veranth JM, Kodavanti UP, Aust AE, Pinkerton KE (2006) Acute pulmonary and systemic effects of inhaled coal fly ash in rats: comparison to ambient environmental particles. Toxicol Sci 93:390–399

    Article  PubMed  CAS  Google Scholar 

  309. Donaldson K, Mills N, MacNee W, Robinson S, Newby D (2005) Role of inflammation in cardiopulmonary health effects of PM. Toxicol Appl Pharmacol 207:483–488

    Article  PubMed  CAS  Google Scholar 

  310. Stone V, Tuinman M, Vamvakopoulos JE, Shaw J, Brown D, Petterson S, Faux SP, Borm P, MacNee W, Michaelangeli F, Donaldson K (2000) Increased calcium influx in a monocytic cell line on exposure to ultrafine carbon black. Eur Respir J 15:297–303

    Article  PubMed  CAS  Google Scholar 

  311. Tong H, McGee JK, Saxena RK, Kodavanti UP, Devlin RB, Gilmour MI (2009) Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. Toxicol Appl Pharmacol 239:224–232

    Article  PubMed  CAS  Google Scholar 

  312. Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V (2002) Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol 184:172–179

    Article  PubMed  CAS  Google Scholar 

  313. Hussain S, Vanoirbeek JA, Luyts K, De Vooght V, Verbeken E, Thomassen LC, Martens JA, Dinsdale D, Boland S, Marano F, Nemery B, Hoet PH (2011) Lung exposure to nanoparticles modulates an asthmatic response in a mouse model of asthma. Eur Respir J 37:299–309

    Article  PubMed  CAS  Google Scholar 

  314. Oberdörster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, Elder AC (2000) Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst 96:5–74 (discussion 75–86)

    PubMed  Google Scholar 

  315. Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, Hohr D, Fubini B, Martra G, Fenoglio I, Borm PJ, Schins RP (2007) Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 222:141–151

    Article  PubMed  CAS  Google Scholar 

  316. Curjuric I, Imboden M, Schindler C, Downs SH, Hersberger M, Liu SL, Matyas G, Russi EW, Schwartz J, Thun GA, Postma DS, Rochat T, Probst-Hensch NM (2010) HMOX1 and GST variants modify attenuation of FEF25-75% decline due to PM10 reduction. Eur Respir J 35:505–514

    Article  PubMed  CAS  Google Scholar 

  317. Ren C, Baccarelli A, Wilker E, Suh H, Sparrow D, Vokonas P, Wright R, Schwartz J (2010) Lipid and endothelium-related genes, ambient particulate matter, and heart rate variability―the VA normative aging study. J Epidemiol Community Health 64:49–56

    Article  PubMed  CAS  Google Scholar 

  318. Wilker E, Mittleman MA, Litonjua AA, Poon A, Baccarelli A, Suh H, Wright RO, Sparrow D, Vokonas P, Schwartz J (2009) Postural changes in blood pressure associated with interactions between candidate genes for chronic respiratory diseases and exposure to particulate matter. Environ Health Perspect 117:935–940

    PubMed  CAS  Google Scholar 

  319. Imboden M, Schwartz J, Schindler C, Curjuric I, Berger W, Liu SL, Russi EW, Ackermann-Liebrich U, Rochat T, Probst-Hensch NM (2009) Decreased PM10 exposure attenuates age-related lung function decline: genetic variants in p53, p21, and CCND1 modify this effect. Environ Health Perspect 117:1420–1427

    Article  PubMed  CAS  Google Scholar 

  320. Wenten M, Gauderman WJ, Berhane K, Lin PC, Peters J, Gilliland FD (2009) Functional variants in the catalase and myeloperoxidase genes, ambient air pollution, and respiratory-related school absences: an example of epistasis in gene-environment interactions. Am J Epidemiol 170:1494–1501

    Article  PubMed  Google Scholar 

  321. Peters A, Greven S, Heid IM, Baldari F, Breitner S, Bellander T, Chrysohoou C, Illig T, Jacquemin B, Koenig W, Lanki T, Nyberg F, Pekkanen J, Pistelli R, Rückerl R, Stefanadis C, Schneider A, Sunyer J, Wichmann HE (2009) Fibrinogen genes modify the fibrinogen response to ambient particulate matter. Am J Respir Crit Care Med 179:484–491

    Article  PubMed  CAS  Google Scholar 

  322. Baccarelli A, Cassano PA, Litonjua A, Park SK, Suh H, Sparrow D, Vokonas P, Schwartz J (2008) Cardiac autonomic dysfunction: effects from particulate air pollution and protection by dietary methyl nutrients and metabolic polymorphisms. Circulation 117:1802–1809

    Article  PubMed  Google Scholar 

  323. Park GY, Christman JW (2006) Involvement of cyclooxygenase-2 and prostaglandins in the molecular pathogenesis of inflammatory lung diseases. Am J Physiol Lung Cell Mol Physiol 290:L797–L805

    Article  PubMed  CAS  Google Scholar 

  324. Montiel-Davalos A, Ibarra-Sanchez Mde J, Ventura-Gallegos JL, Alfaro-Moreno E, Lopez-Marure R (2010) Oxidative stress and apoptosis are induced in human endothelial cells exposed to urban particulate matter. Toxicol In Vitro 24:135–141

    Article  PubMed  CAS  Google Scholar 

  325. Zhao Y, Usatyuk PV, Gorshkova IA, He D, Wang T, Moreno-Vinasco L, Geyh AS, Breysse PN, Samet JM, Spannhake EW, Garcia JG, Natarajan V (2009) Regulation of COX-2 expression and IL-6 release by particulate matter in airway epithelial cells. Am J Respir Cell Mol Biol 40:19–30

    Article  PubMed  CAS  Google Scholar 

  326. Dagher Z, Garcon G, Billet S, Verdin A, Ledoux F, Courcot D, Aboukais A, Shirali P (2007) Role of nuclear factor-κB activation in the adverse effects induced by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. J Appl Toxicol 27:284–290

    Article  PubMed  CAS  Google Scholar 

  327. Churg A, Xie C, Wang X, Vincent R, Wang RD (2005) Air pollution particles activate NF-κB on contact with airway epithelial cell surfaces. Toxicol Appl Pharmacol 208:37–45

    Article  PubMed  CAS  Google Scholar 

  328. Maciejczyk P, Chen LC (2005) Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice VIII. Source-related daily variations in in vitro responses to CAPs. Inhal Toxicol 17:243–253

    Article  PubMed  CAS  Google Scholar 

  329. Nam HY, Choi BH, Lee JY, Lee SG, Kim YH, Lee KH, Yoon HK, Song JS, Kim HJ, Lim Y (2004) The role of nitric oxide in the particulate matter (PM2.5)-induced NFκB activation in lung epithelial cells. Toxicol Lett 148:95–102

    Article  PubMed  CAS  Google Scholar 

  330. Shukla A, Timblin C, BeruBe K, Gordon T, McKinney W, Driscoll K, Vacek P, Mossman BT (2000) Inhaled particulate matter causes expression of nuclear factor (NF)-κB-related genes and oxidant-dependent NF-κB activation in vitro. Am J Respir Cell Mol Biol 23:182–187

    PubMed  CAS  Google Scholar 

  331. Li R, Ning Z, Majumdar R, Cui J, Takabe W, Jen N, Sioutas C, Hsiai T (2010) Ultrafine particles from diesel vehicle emissions at different driving cycles induce differential vascular pro-inflammatory responses: implication of chemical components and NF-κB signaling. Part Fibre Toxicol 7:6

    Article  PubMed  CAS  Google Scholar 

  332. Tal TL, Simmons SO, Silbajoris R, Dailey L, Cho SH, Ramabhadran R, Linak W, Reed W, Bromberg PA, Samet JM (2010) Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles. Toxicol Appl Pharmacol 243:46–54

    Article  PubMed  CAS  Google Scholar 

  333. Totlandsdal AI, Refsnes M, Lag M (2010) Mechanisms involved in ultrafine carbon black-induced release of IL-6 from primary rat epithelial lung cells. Toxicol In Vitro 24:10–20

    Article  PubMed  CAS  Google Scholar 

  334. Alessandrini F, Beck-Speier I, Krappmann D, Weichenmeier I, Takenaka S, Karg E, Kloo B, Schulz H, Jakob T, Mempel M, Behrendt H (2009) Role of oxidative stress in ultrafine particle-induced exacerbation of allergic lung inflammation. Am J Respir Crit Care Med 179:984–991

    Article  PubMed  CAS  Google Scholar 

  335. Hirota R, Akimaru K, Nakamura H (2008) In vitro toxicity evaluation of diesel exhaust particles on human eosinophilic cell. Toxicol In Vitro 22:988–994

    Article  PubMed  CAS  Google Scholar 

  336. Mroz RM, Schins RP, Li H, Drost EM, Macnee W, Donaldson K (2007) Nanoparticle carbon black driven DNA damage induces growth arrest and AP-1 and NFκB DNA binding in lung epithelial A549 cell line. J Physiol Pharmacol 58(Suppl 5):461–470

    PubMed  Google Scholar 

  337. Lee CC, Cheng YW, Kang JJ (2005) Motorcycle exhaust particles induce IL-8 production through NF-κB activation in human airway epithelial cells. J Toxicol Environ Health A 68:1537–1555

    Article  PubMed  CAS  Google Scholar 

  338. Yun YP, Joo JD, Lee JY, Nam HY, Kim YH, Lee KH, Lim CS, Kim HJ, Lim YG, Lim Y (2005) Induction of nuclear factor-κB activation through TAK1 and NIK by diesel exhaust particles in L2 cell lines. Toxicol Lett 155:337–342

    Article  PubMed  CAS  Google Scholar 

  339. Ma C, Wang J, Luo J (2004) Activation of nuclear factor κB by diesel exhaust particles in mouse epidermal cells through phosphatidylinositol 3-kinase/Akt signaling pathway. Biochem Pharmacol 67:1975–1983

    Article  PubMed  CAS  Google Scholar 

  340. Roberts E, Charboneau L, Espina V, Liotta L, Petricoin E, Dreher K (2004) Application of laser capture microdissection and protein microarray technologies in the molecular analysis of airway injury following pollution particle exposure. J Toxicol Environ Health A 67:851–861

    Article  PubMed  CAS  Google Scholar 

  341. Takizawa H, Abe S, Okazaki H, Kohyama T, Sugawara I, Saito Y, Ohtoshi T, Kawasaki S, Desaki M, Nakahara K, Zamamoto K, Matsushima K, Tanaka M, Sagai M, Kudoh S (2003) Diesel exhaust particles upregulate eotaxin gene expression in human bronchial epithelial cells via nuclear factor-κB-dependent pathway. Am J Physiol Lung Cell Mol Physiol 284:L1055–L1062

    PubMed  CAS  Google Scholar 

  342. Zhou YM, Zhong CY, Kennedy IM, Leppert VJ, Pinkerton KE (2003) Oxidative stress and NFκB activation in the lungs of rats: a synergistic interaction between soot and iron particles. Toxicol Appl Pharmacol 190:157–169

    Article  PubMed  CAS  Google Scholar 

  343. Zhou YM, Zhong CY, Kennedy IM, Pinkerton KE (2003) Pulmonary responses of acute exposure to ultrafine iron particles in healthy adult rats. Environ Toxicol 18:227–235

    Article  PubMed  CAS  Google Scholar 

  344. Samet JM, Silbajoris R, Huang T, Jaspers I (2002) Transcription factor activation following exposure of an intact lung preparation to metallic particulate matter. Environ Health Perspect 110:985–990

    Article  PubMed  CAS  Google Scholar 

  345. Kawasaki S, Takizawa H, Takami K, Desaki M, Okazaki H, Kasama T, Kobayashi K, Yamamoto K, Nakahara K, Tanaka M, Sagai M, Ohtoshi T (2001) Benzene-extracted components are important for the major activity of diesel exhaust particles: effect on interleukin-8 gene expression in human bronchial epithelial cells. Am J Respir Cell Mol Biol 24:419–426

    PubMed  CAS  Google Scholar 

  346. Takizawa H, Ohtoshi T, Kawasaki S, Kohyama T, Desaki M, Kasama T, Kobayashi K, Nakahara K, Yamamoto K, Matsushima K, Kudoh S (1999) Diesel exhaust particles induce NF-κB activation in human bronchial epithelial cells in vitro: importance in cytokine transcription. J Immunol 162:4705–4711

    PubMed  CAS  Google Scholar 

  347. Drumm K, Messner C, Kienast K (1999) Reactive oxygen intermediate-release of fibre-exposed monocytes increases inflammatory cytokine-mRNA level, protein tyrosine kinase and NF-κB activity in co-cultured bronchial epithelial cells (BEAS-2B). Eur J Med Res 4:257–263

    PubMed  CAS  Google Scholar 

  348. Oettinger R, Drumm K, Knorst M, Krinyak P, Smolarski R, Kienast K (1999) Production of reactive oxygen intermediates by human macrophages exposed to soot particles and asbestos fibers and increase in NF-κB p50/p105 mRNA. Lung 177:343–354

    Article  PubMed  CAS  Google Scholar 

  349. Drumm K, Oettinger R, Smolarski R, Bay M, Kienast K (1998) In vitro study of human alveolar macrophages inflammatory mediator transcriptions and releases induced by soot FR 101, Printex 90, titandioxide and Chrysotile B. Eur J Med Res 3:432–438

    PubMed  CAS  Google Scholar 

  350. Quay JL, Reed W, Samet J, Devlin RB (1998) Air pollution particles induce IL-6 gene expression in human airway epithelial cells via NF-κB activation. Am J Respir Cell Mol Biol 19:98–106

    PubMed  CAS  Google Scholar 

  351. Watterson TL, Sorensen J, Martin R, Coulombe RA Jr (2007) Effects of PM2.5 collected from Cache Valley Utah on genes associated with the inflammatory response in human lung cells. J Toxicol Environ Health A 70:1731–1744

    Article  PubMed  CAS  Google Scholar 

  352. Ramage L, Guy K (2004) Expression of C-reactive protein and heat-shock protein-70 in the lung epithelial cell line A549, in response to PM10 exposure. Inhal Toxicol 16:447–452

    Article  PubMed  CAS  Google Scholar 

  353. Reibman J, Hsu Y, Chen LC, Kumar A, Su WC, Choy W, Talbot A, Gordon T (2002) Size fractions of ambient particulate matter induce granulocyte macrophage colony-stimulating factor in human bronchial epithelial cells by mitogen-activated protein kinase pathways. Am J Respir Cell Mol Biol 27:455–462

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roel P. F. Schins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

van Berlo, D., Hullmann, M., Schins, R.P.F. (2012). Toxicology of Ambient Particulate Matter. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 101. Springer, Basel. https://doi.org/10.1007/978-3-7643-8340-4_7

Download citation

Publish with us

Policies and ethics