Skip to main content

Substrate Delivery and Ionic Balance Disturbance After Severe Human Head Injury

  • Conference paper
Brain Edema XI

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 76))

Abstract

The most important early pathomechanism in traumatic brain injury (TBI) is alteration of the resting membrane potential. This may be mediated via voltage, or agonist-dependent ion channels (e.g. glutamate-dependent channels). This may result in a consequent increase in metabolism with increased oxygen consumption, in order to try to restore ionic balance via the ATP-dependent pumps. We hypothesize that glutamate is an important agonist in this process and may induce an increase in lactate, potassium and brain tissue C02, and hence a decrease in brain pH. Further we propose that an increase in lactate is thus not an indicator of anaerobic metabolic conditions as has been thought for many years.

We therefore analyzed a total of 85 patients with TBI, Glasgow Coma Scale (GCS) < 8 using microdialysis, brain tissue oxygen, C02 and pH monitoring. Cerebral blood flow studies (CBF) were performed to test the relationship between regional cerebral blood flow (rCBF) and the metabolic determinants.

Glutamate was significantly correlated with lactate (p < 0.0001), potassium (p < 0.0001), brain tissue pH (p = 0.0005), and brain tissue C02 (p = 0.006). rCBF was inversely correlated with glutamate, lactate and potassium. 44% of high lactate values were observed in brain with tissue oxygen values, above the threshold level for cell damage.

These results support the hypothesis of a glutamate driven increase in metabolism, with secondary traumatic depolarization and possi- bly hyperglycolysis. Further, we demonstrate evidence for lactate production in aerobic conditions in humans after TBI. Finally, when reduced regional cerebral blood flow (rCBF) is observed, high dialysate glutamate, lactate and potassium values are usually seen, suggesting ischemia worsens these TBI-induced changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen B, Marmarou A (1992) Post-traumatic selective stimulation of glycolisis. Brain Res 585(1–2): 184–189

    Article  PubMed  CAS  Google Scholar 

  2. Bergsneider M, Hovda D, Shalmon E, Kelly D, Vespa P, MArtin N, Phelps M, McArthur D, Caron M, Kraus J, Becker D (1997) Cerebral hyperglycolisis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg 86(2): 241–251

    Article  PubMed  CAS  Google Scholar 

  3. Bittar P, Charnay Y, Pellerin L, Bouras C, Magistretti P (1996) Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab 16: 1079

    Article  PubMed  CAS  Google Scholar 

  4. Friberg H, Ferrand-Drake M, Bengtsson F, Halestrap A, Wieloch T (1998) Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. J Neurosci 18(4): 5151–5159

    PubMed  CAS  Google Scholar 

  5. Katayama Y, Becker D, Tamura T, Hovda D (1990) Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neuro- surg 73(6): 889–900

    CAS  Google Scholar 

  6. Katayama Y, Maeda T, Koshinaga M, Kawamata T, Tsubokawa T (1995) Role of excitatory amino acid-mediated ionic fluxes in traumatic brain injury. Brain Pathol 5(4): 427–435

    Article  PubMed  CAS  Google Scholar 

  7. Larrabee M (1995) Lactate metabolism and its effect on glucose metabolism in an excised neural tissue. J Neurochem 64: 1734–1741

    Article  PubMed  CAS  Google Scholar 

  8. Larrabee M (1996) Partitioning of C02 production between glucose and lactate in excised sympathetic ganglia with implications for brain. J Neurochem 67: 1726–1734

    Article  PubMed  CAS  Google Scholar 

  9. Levasseur J, Alessandri B, Reinert M, Bullock M, Povlishock J, Kontos H (1999) Fluid percussion injury transiently increases then decreases brain oxygen consumption in the rat. J Neurotrauma (in submission)

    Google Scholar 

  10. Li P, Uchino H, Elmer E, Siesjo B (1997) Amelioration by Cyclosporin A of brain damage following 5 or 10 min of ische- mia in rats subjected to preischemic hyperglycemia. Brain Res 753: 133–140

    Article  PubMed  CAS  Google Scholar 

  11. Magistretti P, Sorg O, Yu N, MArtin J, Pellerin L (1993) Neurotransmitters regulate energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells. Dev Neurosci 15: 306–312

    Article  PubMed  CAS  Google Scholar 

  12. Magistretti P, Pellerin L, Rothman D, Shulman R (1999) Energy on demand. Science 283: 495–497

    Article  Google Scholar 

  13. Maran A, Cranston I, Macdonald I, Amiel S (1994) Protection by lactate of cerebral function during hypoglycemia. Lancet 343: 16

    Article  PubMed  CAS  Google Scholar 

  14. Mayevsky A, Manor T, Meilin S, Doron A, Ouankine G (1998) Real-time multiparametric monitroing of the injured human cerebral cortex- a new approach. Acta Neurochir [Suppl] (Wien) 71:78–81

    CAS  Google Scholar 

  15. Obrenovitch T, Urenjak J (1997) Is high extracellular glutamate the key to excitotxicity in traumatic brain injury. J Neurotrauma 14(10): 677–698

    Article  PubMed  CAS  Google Scholar 

  16. Pellerin L, Magistretti P (1994) Glutamate uptake into astrocytes stimulates aerobic glycolisis: A mechanism coupling neuronal activity to glucose utilization. Neurobiology 91(22): 10625–10629

    CAS  Google Scholar 

  17. Pellerin L, Pellegri G, Bittar P, Charnay Y, Bouras C, Stella N, Magistretti P (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Develop- ment Neurosci 20: 291–299

    Article  CAS  Google Scholar 

  18. Schousboe A, Westergaard N, Waagepetersen H, Larsson O, Bakken I, Sonnewald U (1997) Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. Glia 21: 99–105

    Article  PubMed  CAS  Google Scholar 

  19. Schurr A, West C, Rigor B (1988) Lactate supported synaptic function in the rat hippocampal slice preparation. Science 240: 1326–1328

    Article  PubMed  CAS  Google Scholar 

  20. Schurr A, Miller J, Payne R, Rigor B (1999) An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci 19(1): 34–39

    PubMed  CAS  Google Scholar 

  21. Tomita Y, Stiefel M, Marmarou A (1999) Ionic dysfunction accompanying traumatic brain injury in rats. Poster program, American Association of Neurological Surgeons. Poster 1417: 239

    Google Scholar 

  22. Tscaopoulos M, Magistretti P (1996) Metabolic coupling between Glia and Neurons. J Neurosci 16(3): 877–885

    Google Scholar 

  23. Valadka A, Goodman J, Gopinath S, Uzura M, Robertson C (1998) Comparison of brain tissue oxygen tension to microdialysis-based measures of cerebral ischemia in fatally head injured patients. J Neurotrauma 15(7): 509–519

    Article  PubMed  CAS  Google Scholar 

  24. Vega C, Poitry-Yamate C, Jirounek P, Tsacopoulos M, Coles J (1998) Lactate is released and taken up by isolated rabit vagus nerve during aerobic metabolism. J Neurochem 71(1): 330–337

    Article  PubMed  CAS  Google Scholar 

  25. Waagepetersen H, Bakken I, Larsson O, Sonnewald U, Schousboe A (1998) Metabolism of lactate in cultured GABAergic neurons studied by 13C nuclear magnetic resonance spectroscopy. J Cereb Blood Flow Metab 18(1): 109–117

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this paper

Cite this paper

Reinert, M., Hoelper, B., Doppenberg, E., Zauner, A., Bullock, R. (2000). Substrate Delivery and Ionic Balance Disturbance After Severe Human Head Injury. In: Mendelow, A.D., et al. Brain Edema XI. Acta Neurochirurgica Supplements, vol 76. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6346-7_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6346-7_91

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7257-5

  • Online ISBN: 978-3-7091-6346-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics