Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 279))

Abstract

This section is based on Shannon’s original paper1 which presents an information-theoretic approach to cryptology. Previous accounts of Shannon’s theory may be found in the books by Konheim2 and Beker and Piper3 Figure gives a schematic diagram of a cipher system (or secrecy system, as it was called by Shannon) At the transmitting end there are two “information” sources: a message source and a key source. Before any message is sent, the two parties, the encipherer and the recipient, agree on their key K, which is selected from the available set: the key space. Once the key is agreed, the encipherer selects a message M from the message space, enciphers it with the particular transformation T K determined by the key, and sends the cryptogram C = T K (M) over a public channel (where it can be intercepted) to the intended recipient. At the receiving end the cryptogram and the key are combined by the decipherer to recover the message M = T −1 K (C). The set of all possible cryptograms is called the cryptogram space, Naturally, the transformations T k mapping messages into cryptograms should be invertible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. E. Shannon, “Communication theory of secrecy systems,” BSTJ 28 pp. 656–715 (1949).

    MathSciNet  MATH  Google Scholar 

  2. A. G. Konheim, Cryptography: A Primer, J Wiley, New York (1981).

    MATH  Google Scholar 

  3. H. Beker and F. Piper, Cipher systems, Northwood Books, London (1982).

    MATH  Google Scholar 

  4. E. Grossman, “Group theoretic remarks on cryptogtaphic systems based on two types of addition,” IBM TJ Wattson Res. Center RC 4742 (1974).

    Google Scholar 

  5. D. Coppersmith and E. Grossman, “Generators for certain alternating groups with applications to cryptography,” SIAM journal on, applied mathematics 29 pp. 824–627 (1975).

    Article  MathSciNet  Google Scholar 

  6. A. G. Konheim, Cryptography: A Primer, J Wiley, New York (1981).

    MATH  Google Scholar 

  7. J. B. Kam and G. I. Davida, “Structured design of substitution-permutation encryption networks,” IEEE Transactions on computers C-28 pp. 747–753 (1979).

    Google Scholar 

  8. C. Ronse, “Substitution networks,” Philips Research Laboratory. Brussels R-444 (1980).

    Google Scholar 

  9. V. E. Benes, Mathematical theory of switching networks and telephone traffic, Academic press, New York (1965).

    Google Scholar 

  10. D. Slepian, “Two theorems on a particular switching network,” Unpublished manuscript, (1952).

    Google Scholar 

  11. A. Waksman, “A permutation network,” JI ACM 15 pp. 159–163 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. W. Golomb, Shift register sequences, Holden Day, San Francisco (1967).

    MATH  Google Scholar 

  13. C. E. Shannon, “Communication theory of secrecy systems,” BSTJ 28 pp. 656–715 (1949).

    MathSciNet  MATH  Google Scholar 

  14. H. Feistel, “Cryptography and computer privacy,” Scientific American, pp. 1523 (1973).

    Google Scholar 

  15. R Morris, N. J. A. Sloane, and A. D. Wyner, “Assessment of the NBS proposed Data Encryption Standard,” Cr ptologia 1 pp. 301–306 (1977).

    Google Scholar 

  16. A. M. Whitehead, “Memoir on the algebra of symbolic logic,” Amer. Jlof Math 23 pp. 139–165 (1901).

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Lowenheim, “Gebietdeterminanten,” Math. Ann 79 pp. 222–236 (1919).

    MathSciNet  Google Scholar 

  18. S. Rudeanu, Boolean functions and equations, North Holland, Amsterdam (1974).

    MATH  Google Scholar 

  19. D. A. Huffman, “Canonical forms for information lossless finite state logical machines,” IRE Transactions on circuit theory CT-6 pp. 41–59 (1959). Special supplement

    Google Scholar 

  20. A. M. Duguid, “Structural properties of switching networks,” Broom, University Progress report, (1959).

    Google Scholar 

  21. V. J. Neiman, “Structure et commande optimales des reseaux de connexion sans bloquage,” Annales des telecommunications 24 pp. 232–238 (1969).

    Google Scholar 

  22. N. T. Tsao-Wu, “On Neiman’s algorithm for the control of rearrangeable switching networks,” IEEE transactions on communications COM-22 pp. 737–742 (1974).

    Google Scholar 

  23. I. J. Good, “The relationship between two Fast Fourier Transforms,” IEEE Transactions on computers C-20 pp. 310–317 (1971).

    Google Scholar 

  24. Davio, M. and Quisquater, J. J., Methodology in information security. Mutual authentication procedures. Application to access control., Proc. 1982 Zurich International Seminar on Digital Communication, 1982, pp. 87–92.

    Google Scholar 

  25. Diffie, W. and Hellman, M. E., New directions in cryptography, IEEE Trans. Inform. Theory, IT-22, 6, Nov. 1976, pp. 644–654.

    Article  MathSciNet  Google Scholar 

  26. Diffie, W. and Hellman, M. E., Privacy and authentication. An introduction to cryptography, Proc. IEEE, 87, 3, 1979, pp. 397–427.

    Article  Google Scholar 

  27. Evans, A., Kantorovitz, W. and Weiss, E., A user authentication scheme not requiring secrecy in the computer, Comm. ACM, 17, 1974, pp. 437–442.

    Article  Google Scholar 

  28. Ingemarson, I., Tang, D. T. and Wong, C. K., A conference key distribution system, IBM Research Report RC 8256 (#35599), 1980.

    Google Scholar 

  29. Ingemarson, I. and Wong, C. K., A user authentication scheme based on a trapdoor one-way function, IBM Research Report, 1980.

    Google Scholar 

  30. Mc Eliece, R. J., A public key cryptosystem based on algebraic theory, Deep space network progress rept 42–44, Pasadena, Jet propulsion lab., 1978, pp. 114–116.

    Google Scholar 

  31. Merkle, R. C., Protocols for public key cryptosystems, Proc. 1980 conference on security and privacy, IEEE, NY, 1980, pp. 122–134.

    Google Scholar 

  32. Merkle, R. C. and Hellman, M. E., Hiding information and signatures in trapdoor knapsacks, IEEE Trans. Inform. Theory, 1T-24, 1978, pp. 525–530.

    Google Scholar 

  33. Rivest, R. L., Shamir, A. and Adleman, L., A method of obtaining digital signatures and public-key cryptosystems, Comm. ACM, 21, Feb. 1978, pp. 120–126.

    Article  MathSciNet  MATH  Google Scholar 

  34. Shamir, A., On the power of commutativity in cryptography, in “Automata, languages and programming’; ICALP 80, Lectures Notes in Computer Science n° 85, Springer-Verlag, Berlin, 1980, pp. 582–595.

    Google Scholar 

  35. Simmons, G. J., A system for point of sale or access user authentication and identification, IEEE workshop on communication security, Santa Barbara, CA., 1981.

    Google Scholar 

  36. R. C. Merkle and M. E. Hellman, “Hiding information and signatures in trapdoor knapsacks,” IEEE transactions on information theory 24 pp. 525–530 (1978).

    Article  Google Scholar 

  37. E. Horowitz and S. Salmi, “Computing partitions with applications to the knapsack,” It of the ACM 21 pp. 277–292 (1974).

    MATH  Google Scholar 

  38. A. Shamir and R. E. Zippel, “On the security of the Merkle-Hellman cryptographic scheme,” IEEE transactions on information theory 26 pp. 339–340 (1980).

    Article  MATH  Google Scholar 

  39. Y. Desrnedt, J. Vandewalle, and R. Govaerts, “Critical analysis of the Knapsack Public Key Algorithm,” IEEE Transactions on information theory,(1982). to appear

    Google Scholar 

  40. A. Shamir, Apolynomial time algorithm for breaking Merkle-Hellman cryptosystems, The Neiman Insititute, Rehovot, Israel (1982). Research announcement; preliminary draft

    Google Scholar 

  41. R. L. Rivest, “Remarks on a proposed cryptanalytic attack on the MIT public-key cryptosystem,” Oryptologia, pp. 62–65 (1978).

    Google Scholar 

  42. M. A. Morrison and J. Brillhart, “A method for factoring and the factorization of F7,” Math. Comp. 29 pp. 183–205 (1975).

    MathSciNet  MATH  Google Scholar 

  43. J. H. Pollard, “A Monte-Carlo Method for Factorization,” BIT 15 pp. 331–334 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  44. H. C. Williams and B. Schmid, “Some remarks concerning the MIT public-key cryptosystem,” BIT 19 pp. 525–538 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  45. G. J. Simmons and M. J. Norris, “Preliminary comments on the MIT public-key cryptosystem,” Oryptologia 1 (4) pp. 406–414 (1977).

    Google Scholar 

  46. T. Herlestam, “Critical remarks on some public-key cryptosystems,” BIT 18 pp. 493–496 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  47. R. L. Rivest, by T. Herlestam“” “Critical remarks on ”Critical Remarks on some public-key cryptosystems“ by T. Herlestam,” BIT 19 pp. 274–275 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  48. G. R. Blakley and I. Borosh, “Rivest-Shamir-Adleman public-key cryptosystems do not always conceal messages,” Computers and Mathematics with Applications 5 pp. 169–178] (1979).

    Article  MathSciNet  MATH  Google Scholar 

  49. H. Beker and F Piper, Cipher systems, Northwood Books, London (1982).

    MATH  Google Scholar 

  50. V. E. Benes, Mathematical theory of switching networks and telephone traffic, Academic press, New York (1965).

    MATH  Google Scholar 

  51. B. Blakley and G. R. Blakley, “Security of number theoretic public-key cryptosystems against random attack, II,” Cryptologia 1 pp. 29–41 (1979).

    Article  MathSciNet  Google Scholar 

  52. G. R. Blakley and I. Borosh, “Rivest-Shamir-Adleman public-key cryptosystems do not always conceal messages,” Computers and Mathematics with Applications 5 pp. 169–178] (1979).

    Google Scholar 

  53. D. Coppersmith and E. Grossman, “Generators for certain alternating groups with applications to cryptography,” SIAM journal on applied mathematics 29 pp. 624–627 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Davio and J.-J. Quisquater, “Methodology in Information Security. Mutual Authentication Procedures. Application to access control.,” Proceedings 1982 Zurich International Seminar on Digital Communications, pp. 8792 (1982).

    Google Scholar 

  55. Y. Desmedt, J. Vandewalle, and R Govaerts, “Critical analysis of the Knapsack Public Key Algorithm,” IEEE Transactions on information theory,(1982). to appear

    Google Scholar 

  56. W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions on information theory IT-22 pp. 644–654 (1976).

    Google Scholar 

  57. W. Diffie and M. E. Hellman, “Privacy and Authentication. An Introduction to Cryptography.,” IEEE Proceedings 87 (3) pp. 397–427 (1979).

    Article  Google Scholar 

  58. A. M. Duguid, “Structural properties of switching networks,” Brown University Progress report, (1959).

    Google Scholar 

  59. A, Evans, W Kantorowitz, and E. Weiss, “A user Authentication Scheme not Requiring Secrecy in the Computer,” Communications of the ACM 17 pp. 437–442 (1974).

    Article  Google Scholar 

  60. H. Feistel, “Cryptographic coding for data bank privacy,” IBM Research Report RC2827 (1970).

    Google Scholar 

  61. S. W. Golomb, Shift register sequences, Holden Day, San Francisco (1967).

    Google Scholar 

  62. I. J. Good, “The relationship between two Fast Fourier Transforms,” IEEE Transactions on computers C-20 pp. 310–317 (1971).

    Google Scholar 

  63. E. Grossman, “Group theoretic remarks on cryptogtaphic systems based on two types of addition,” IBM TJ Wattson Res. Center RC 4742 (1974).

    Google Scholar 

  64. T. Herlestam, “Critical remarks on some public-key cryptosystems,” BIT 18 pp. 493–496 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  65. E. Horowitz and S. Salmi, “Computing partitions with applications to the knapsack,” Il of the ACM 21 pp. 277–292 (1974).

    MATH  Google Scholar 

  66. D. A. Huffman, “Canonical forms for information lossless finite state logical machines,” IRE Transactions on circuit theory CT-6 pp. 41–59 (1959). Special supplement

    Google Scholar 

  67. I. Ingemarson, “A user authentication scheme based on a trapdoor one-way function,” IBM Res. Rpt (1980).

    Google Scholar 

  68. I. lngemarsson and C. K. Wong, “A conference Key Distribution System,” IBM Research Report RC 8236 (#35599) (1980).

    Google Scholar 

  69. J. B. Kam and G. I. Davida, “Structured design of substitution-permutation encryption networks,” IEEE Transactions on computers 28. 747–753 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  70. A. G. Konheim, Cryptography: A Primer, J Wiley, New York (1981).

    Google Scholar 

  71. L. Lowenheim, “Gebietdeterminanten,” Math. Ann 79 pp. 222–236 (1919).

    MathSciNet  Google Scholar 

  72. R. McEliece, “A public key cryptosystem based on algabraic theory,” Deep space network Progr. Rpt JPL., Pasadena (1978).

    Google Scholar 

  73. R. C. Merkle and M. E. Hellman, “Hiding information and signatures in trapdoor knapsacks,” IEEE transactions on information theory 24 pp. 525–530 (1978).

    Article  Google Scholar 

  74. R. C. Merkle, “Protocols for Public-Key Cryptosystems,” Proc. 1980 Conference on Security and Privacy. IEEE. N. Y., pp. 122–134 (1980).

    Google Scholar 

  75. R. Morris, N. J. A. Sloane, and A. D. Wyner, “Assessment of the NBS proposed Data Encryption Standard,” Cryptologia 1 pp. 301–306 (1977).

    Article  Google Scholar 

  76. M. A. Morrison and J. Brillhart, “A method for factoring and the factorization of F7, Math. Comp. 29 pp. 183–205 (1975).

    MathSciNet  MATH  Google Scholar 

  77. V. J. Neiman, “Structure et commande optimales des roseaux de connexion sans bloquage,” Annales des telecommunications 24 pp. 232–238 (1969).

    Google Scholar 

  78. J. H. Pollard, “A Monte-Carlo Method for Factorization,” BIT 15 pp. 331–334 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  79. R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public-Key Cryptosystems,” Communications of the ACM 21 (2) pp. 120–126 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  80. R. L. Rivest, “Remarks on a proposed cryptanalytic attack on the MIT public-key cryptosystem,” Cryptologia, pp. 62–65 (1978).

    Google Scholar 

  81. R. L. Rivest, “Critical remarks on ”Critical Remarks on some public-key cryptosystems“,” BIT 19 pp. 274–275 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  82. C. Ronse, “Substitution networks,” Philips Research Laboratory. Brussels R444 (1980).

    Google Scholar 

  83. S. Rudeanu, Boolean functions and equations, North Holland, Amsterdam (1974).

    MATH  Google Scholar 

  84. A. Shamir, “On the Power of Commutativity in Cryptography,” pp. 582–595 in Automata, Languages and Programming. ICALP_80 Lecture Notes, Springer, Berlin (1980).

    Google Scholar 

  85. A. Shamir and R. E. Zippel, “On the security of the Merkle-Hellman cryptographic scheme,” IEEE transactions on information theory IT-28 pp. 339–340 (1980).

    Google Scholar 

  86. A Shamir, A polynomial time algorithm for breaking Merkle-Hellman cryptosystems, The Neiman Insititute, Rehovot, Israel (1982). Research announcement; preliminary draft

    Google Scholar 

  87. C. E. Shannon, “Communication theory of secrecy systems,” BSTJ 28 pp. 656–715 (1949).

    Google Scholar 

  88. G. J. Simmons and M. J. Norris, “Preliminary comments on the MIT public-key cryptosystem,” Cryptologia 1 (4) pp. 406–414 (1977).

    Article  Google Scholar 

  89. G J Simmons, “A System for Point-of-Sale or Access User Authentication and Identification,” IEEE Workshop on Communication Security, (1981).

    Google Scholar 

  90. D. Slepian, “Two theorems on a particular switching network,” Unpublished manuscript, (1952).

    Google Scholar 

  91. R. Solovay and V. Strassen, “A fast Monte-Carlo test for primality,” SIAM Jl. of computing 6 pp. 84–85 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  92. N. T. Tsao-Wu, “On Neiman’s algorithm for the control of rearrangeable switching networks,” IEEE transactions on communications COM-22 pp. 737–742 (1974).

    Google Scholar 

  93. A. Waksman, “A permutation network,”,I1 ACM 15 pp. 159–163 (1968).

    MathSciNet  MATH  Google Scholar 

  94. A. M. Whitehead, “Memoir on the algebra of symbolic logic,” Amer. Jt of Math 23 pp. 139–165 (1901).

    Article  MathSciNet  MATH  Google Scholar 

  95. H. C. Williams and B. Schmid, “Some remarks concerning the MIT public-key cryptosystem,” BIT 19 pp. 525–538 (1979).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Wien

About this chapter

Cite this chapter

Davio, M., Goethals, JM. (1983). Elements of Cryptology. In: Longo, G. (eds) Secure Digital Communications. International Centre for Mechanical Sciences, vol 279. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2640-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2640-0_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81784-1

  • Online ISBN: 978-3-7091-2640-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics