Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 450))

Abstract

Flows of two immiscible liquids are encountered in a diverse range of processes and equipments. In particular in the petroleum industry, where mixtures of oil and water are transported in pipes over long distances. Accurate prediction of oil-water flow characteristics, such as flow pattern, water holdup and pressure gradient is important in many engineering applications. However, despite of their importance, liquid-liquid flows have not been explored to the same extent as gas-liquid flows. In fact, gas-liquid systems represent a very particular extreme of two-fluid systems characterized by low-density ratio and low viscosity ratio. In liquid-liquid systems the density difference between the phases is relatively low. However, the viscosity ratio encountered extends over a range of many orders of magnitude. Table 1.1 summarizes experimental studies reported in the literature on horizontal oil-water pipe flows, while studies on inclined and vertical systems are summarized in Table 1.2 and 1.3. (The tables can be found at the end of the end of this article before the bibliography). These tables reflect the wide range of physical properties encountered. Moreover, oils and oil-water emulsions may show a Newtonian or non-Newtonian rheological behavior. Therefore, the various concepts and results related to gas-liquid two-phase flows cannot be readily applied to liquid-liquid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acrivos, A. and Lo, T.S. (1978). Deformation and breakup of a single slender drop in an extensional flow. Journal Fluid Mechanics 86: 641.

    Article  MATH  Google Scholar 

  • Alkaya, B., Jayawardena, S.S., and Brill J.P. (2000). Oil-water flow patterns in slightly inclined pipes. In Proceedings 2000 ETCE/OMAE Joint Conference, Petroleum Production Symposium, New Orleans, 14–17 February, 1–7.

    Google Scholar 

  • Andreini, P.A., Greeff P., Galbiati, L., Kuklwetter, A. and Sutgia, G. (1997). Oil-water flow in small diameter tubes. International Symposium on Liquid-Liquid Two-Phase Flow And Transport Phenomena. Antalya, Turkey, 3–7.

    Google Scholar 

  • Angeli, P., and Hewitt, G.F. (1996). Pressure-Gradient Phenomenon During Horizontal Oil-Water Flow, ASME Proceedings OMAE 5: 287–295.

    Google Scholar 

  • Angeli, P., and Hewitt, G.F. (1998). Pressure gradient in horizontal liquid-liquid flows. International Journal Multiphase Flow 24: 1183–1203.

    Article  MATH  Google Scholar 

  • Angeli, P., and Hewitt, G.F. (2000). Flow structure in horizontal oil-water flow. International Journal Multiphase Flow 26: 1117–1140.

    Article  MATH  Google Scholar 

  • Angeli, P., Lovick, S. and Lum, Y.L. (2002). Investigations on the Three-Layer Pattern During L-L Flows, 40th European Two-Phase Flow Group Meeting, Stockholm, June 10–13.

    Google Scholar 

  • Arirachakaran, S., Oglesby, K.D., Malinowsky, M.S., Shoham, O., and Brill, J.P. (1989). An Analysis of Oil/Water Flow Phenomena in Horizontal Pipes. SPE Paper 18836, SPE Professional Product Operating Symposium, Oklahoma.

    Google Scholar 

  • Arney, M., Bai, R., Guevara, E., Joseph, D.D. and Liu, K. (1993). Friction factor and holdup studies for lubricated pipelining: I. Experiments and correlations. International Journal of Multiphase Flow 19: 1061–1076.

    Article  MATH  Google Scholar 

  • Azzopardi, B.J. and Hewitt, G.F. (1997). Maximum drop sizes in gas-liquid flows. Multiphase Science Technology 9: 109–204.

    Google Scholar 

  • Bai, R., Chen, K. and Joseph, D.D. (1992). Lubricated pipelining: Stability of core-annular flow, Part V. experiments and comparison with theory, Journal of Fluid Mechanics 240: 97–132.

    Article  Google Scholar 

  • Barnea, D. (1987). A Unified model for predicting flow-pattern transitions for the whole range of pipe inclinations. International Journal Multiphase Flow 11: 1–12.

    Article  Google Scholar 

  • Baron, T., Sterling, C.S., and Schueler, A.P. (1953). Viscosity of Suspensions–Review and Applications of Two-Phase Flow. Proceedings 3rd Midwestern Conference Fluid Mechanics. University of Minnesota, Minneapolis 103–123.

    Google Scholar 

  • Bentwich, M. (1964). Two-phase axial flow in pipe. Trans. of the ASME. Series D 84 (4): 669–672.

    Google Scholar 

  • Bentwich, M., Kelly, D.A.I. and Epstein, N. (1970). Two-Phase Eccentric Interface Laminar Pipeline Flow. J. Basic Engineering 92: 32–36.

    Article  Google Scholar 

  • Bentwich, M. (1976). Two-phase laminar flow in a pipe with naturally curved interface. Chemical Engineering Sciences 31: 71–76.

    Article  Google Scholar 

  • Beretta, A., Ferrari, P., Galbiodi, L., Andreini, P.A. (1997). Oil-Water Flow in Small Diameter Tubes. Pressure Drop. International Comm. Heat Mass Transfer 24(2): 231239.

    Google Scholar 

  • Beretta, A., Ferrari, P., Galbiodi, L., Andreini, P.A. (1997). Oil-Water Flow in Small Diameter Tubes. Flow Patterns. International Comm. Heat Mass Transfer 24(2): 223229.

    Google Scholar 

  • Biberg, D., Halvorsen, G. (2000). Wall and interfacial shear stress in pressure driven two-phase laminar stratified pipe flow. International Journal Multiphase Flow 26: 1645 1673.

    Google Scholar 

  • Brauner, N., and Moalem Maron, D. (1989). Two-phase liquid liquid stratified flow, PCH Physico Chemica, Hydrodynamics 11 (4): 487–506.

    Google Scholar 

  • Brauner, N. (1990). On the Relation Between Two-Phase Flow Under Reduced Gravity and Earth Experiment. International Comm. Heat Mass Transfer 17 (3): 271–282.

    Article  Google Scholar 

  • Brauner, N., and Moalem Maron, D. (1991). Analysis of stratified/nonstratified transitional boundaries in horizontal gas-liquid flows. Chemical Engineering Science 46(7):18491859.

    Google Scholar 

  • Brauner, N. (1991). Two-Phase Liquid-Liquid Annular Flow. International Journal Multiphase Flow, 17 (1): 59–76.

    Article  MATH  Google Scholar 

  • Brauner, N., and Moalem Maron, D. (1992a). Stability analysis of stratified liquid-liquid horizontal flow. International Journal of Multiphase Flow 18: 103–121.

    Article  MATH  Google Scholar 

  • Brauner, N., and Moalem Maron, D. (1992b). Flow pattern transitions in two phase liquid-liquid horizontal tubes International Journal of Multiphase Flow 18: 123–140.

    Article  MATH  Google Scholar 

  • Brauner, N., and Moalem Maron, D. (1992c). Identification of the range of small diameter conduits regarding two-phase flow patterns transitions. International Comm. Heat Mass Transfer 19: 29–39.

    Article  Google Scholar 

  • Brauner, N., and Moalem Maron, D. (1992d). Analysis of stratified/nonstratified transitional boundaries in inclined gas-liquid flows. International Journal of Multiphase Flow 18 (4): 541–557.

    Article  MATH  Google Scholar 

  • Brauner, N., and Moalem Maron, D. (1993). The role of interfacial shear modelling in predicting the stability of stratified two-phase flow. Chemical Engineering Science 8 (10): 2867–2879.

    Article  Google Scholar 

  • Brauner, N., and Moalem Maron, D. (1994). Stability of two-phase stratified flow as controlled by laminar turbulent transition. International Comm. Heat Mass Transfer, 21: 65–74.

    Article  Google Scholar 

  • Brauner, N., Rovinsky, J. and Moalem Maron, D. (1995a). Analytical Solution of Laminar-Laminar Stratified Two-Phase Flows with Curved Interfaces, Proceedings of the 7th International Meeting of Nuclear Rector Thermal-Hydraulics NURETh-7(1):192–211.

    Google Scholar 

  • Brauner, N. (1996). Role of Interfacial Shear Modelling in Predicting Stability of Stratified Two-Phase Flow, in Encyclopedia of Fluid Mechanics, edited by N.P. Cheremisinoff. Advances in Engineering Fluid Mechanics: Boundary Conditions Required for CFD Simulation, 5: 317–378.

    Google Scholar 

  • Brauner, N., Rovinsky, J., and Moalem Maron, D. (1996a). Analytical solution for laminar-laminar two-phase stratified flow in circular conduits. Chemical Engineering Comm. 141–142, 103–143.

    Article  Google Scholar 

  • Brauner, N., Rovinsky, J. and Moalem Maron, D. (1996b). Determination of the Interface Curvature in Stratified Two-Phase Systems by Energy Considerations. International Journal Multiphase Flow 22: 1167–1185.

    Article  MATH  Google Scholar 

  • Brauner, N. (1997). Consistent Closure Laws for Modelling Two-Phase Annular Flow Via Two-Fluid Approach. Internal Report, Tel-Aviv University, Faculty of Engineering, October.

    Google Scholar 

  • Brauner, N., Moalem Maron, D. and Rovinsky, J. (1997). Characteristics of Annular and Stratified Two-Phase Flows in the Limit of a Fully Eccentric Core Annular Configuration, Proc. of the ExHFT-4, Brussels, 2: 1189–1196.

    Google Scholar 

  • Brauner, N. (1998). Liquid-Liquid Two-Phase Flow, Chap. 2.3.5 in HEDU - Heat Exchanger Design Update, edited by G.F. Hewitt 1:40.

    Google Scholar 

  • Brauner, N., Moalem Maron, D. and Rovinsky, J. (1998). A Two-Fluid Model for Stratified Flows with Curved Interfaces. International Journal Multiphase Flow. 24: 975 1004.

    Google Scholar 

  • Brauner, N. (2000). The onset of drops atomization and the prediction of annular flow boundaries in two-phase pipe flow. Internal Report-5101, Faculty of Engineering, Tel-Aviv, Israel.

    Google Scholar 

  • Brauner, N. (2001). The Prediction of Dispersed Flows Boundaries in Liquid-Liquid and Gas-Liquid Systems, International Journal Multiphase Flow 27 (5): 911–928

    Article  MathSciNet  Google Scholar 

  • Brauner, N. and Ullmann, A. (2002). Modelling of Phase Inversion Phenomenon in Two-Phase Pipe Flow, International Journal Multiphase Flow. In print.

    Google Scholar 

  • Brodkey, R.S. (1969). The Phenomena of Fluid Motions. Addison-Wesley, Reading, MA. Brown, R.A.S., and Govier, G.W. (1961). High-Speed Photography in the Study of Two-Phase Flow. Canadian Journal Chemical Engineering 159–164.

    Google Scholar 

  • Chesters, A.K. (1991). The Modelling of Coalescence Process in Fluid-Liquid Dispersions. Chemical Engineering Res. Des., Part A 69 (A4): 259–270.

    Google Scholar 

  • Cohen, R.D. (1991). Shattering of Liquid Drop due to Impact. Proceedings Royal Society, London A435: 483–503.

    Google Scholar 

  • Charles, M.E., Govier, G.W., and Hodgson, G.W. (1961). The horizontal flow of equal density oil-water mixtures, Canadian Journal of Chemical Engineering, 39: 287–36.

    Article  Google Scholar 

  • Charles, M.E., and Lilleleht, L.U. (1966). Correlation of Pressure Gradients for the Stratified Laminar-Turbulent Pipeline Flow of Two Immiscible Liquids. Canadian Journal Chemical Engineering 44: 47–49.

    Article  Google Scholar 

  • Clift, R., Grace, J.R., and Weber, M.E. (1978). Bubbles, Drops and Particles. Academic Press.

    Google Scholar 

  • Colebrook, C. (1938–39). Turbulent Flow in Pipes with Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws. Journal Inst. Cir. Engineering 11: 133–156.

    Google Scholar 

  • Cox, A.L. (1986). A Study of Horizontal and Downhill Two-Phase Oil-Water Flow, M.S. Thesis, The University of Texas.

    Google Scholar 

  • Davies, J.T. (1987). A physical interpretation of drop sizes in homogenizers agitated viscous oils. Chemical Engineering Science 42 (7): 1671–1676.

    Article  Google Scholar 

  • Decarre, S., and Fabre, J. (1997). Phase inversion behavior for liquid-liquid dispersions, Revue Institution Francais du Petiale. 52: 415–424.

    Article  Google Scholar 

  • Ding, Z.X., Ullah, K., and Huang, Y. (1994). A comparison of predictive oil/water holdup models for production log interpretation in vertical and deviated wellbores, in In Proceedings SPWLA 35th Annual Logging Symposium, Tulsa, OK, USA, June 19–22, 1–12.

    Google Scholar 

  • Epstein, N., Bianchi, R.J., Lee, V.T.Y., and Bentwich, M. (1974). Eccentric Laminar Couette Flow of Long Cylindrical Capsules, Canadian Journal of Chemical Engineering. 52: 210–214.

    Article  Google Scholar 

  • Fairuzov, Y.V., Medina, P.A., Fierro, J.V. Islas, R.G. (2000). Flow pattern transitions in horizontal pipelines carrying oil-water mixtures: full-scale experiments. Journal Energy Resources Technology-Trans. ASME 122: 169–176.

    Google Scholar 

  • Flores, J.G. (1997). Oil-Water Flow in Vertical and Deviated Wells. Ph.D. Dissertation, The University of Tulsa, Tulsa, Oklahoma.

    Google Scholar 

  • Flores, J.G., Chen, X.T., Sarica, C., and Brill, J.P. (1997). Characterization of Oil-Water Flow Patterns in Vertical and Deviated Wells. 1997 SPE Annual Technical Conference and Exhibition. San Antonio, Texas, SPE paper 38810 1–10.

    Google Scholar 

  • Fujii, T., Otha, J., Nakazawa, T., and Morimoto, O. (1994). The Behavior of an Immiscible Equal-Density Liquid-Liquid Two-Phase Flow in a Horizontal Tube. JSME Journal Series B, Fluids and Thermal Engineering, 30 (1): 22–29.

    Google Scholar 

  • Garner, R.G., and Raithby, G.D. (1978). Laminar Flow Between a Circular Tube and a Cylindrical Eccentric Capsule, Canadian Journal of Chemical Engineering. 56: 176180.

    Google Scholar 

  • Gat S., (2002). Two-Phase Liquid-Liquid Concurrent flow in Inclined Tubes. M.Sc. Thesis, Faculty of Engineering, Tel-Aviv University.

    Google Scholar 

  • Goldstein, A. (2000). Analytical Solution of Two-Phase Laminar Stratified Flow in Inclined Tubes, M.Sc. Thesis.

    Google Scholar 

  • Gorelic, D. and Brauner, N. (1999). The Interface Configuration in Two-Phase Stratified Flow, International Journal Multiphase Flow. 25: 877–1007.

    Google Scholar 

  • Govier, G.W., Sullivan, G.A., and Wood, R.K. (1961). The Upward Vertical Flow of Oil-Water Mixtures. Canadian Journal of Chemical Engineering 9: 67–75.

    Article  Google Scholar 

  • Govier, G.W., and Aziz, K. (1972). The Flow of Complex Mixtures in Pipes, Robert E. Krieger Publishing Company, 1st ed., 326–327, New York.

    Google Scholar 

  • Grace, J.R., Wairegi, T., and Brophy, J. (1978). Break-up of Drops and Bubbles in Stagnant Media. Canadian Journal of Chemical Engineering 56: 3–8.

    Article  Google Scholar 

  • Guevara, E., Zagustin, K., Zubillaga, V., and Trallero, J.L. (1988). Core-Annular Flow (CAF): The Most Economical Method for the Transportation of Viscous Hydrocarbons, 4th UNITAR/U. N. Dev. Program AOSTRA-Petro-Can-Pet. Venez., S.A.-DOE Heavy Crude Tar Sands. International Conference Edmonton. 5: 194.

    Google Scholar 

  • Guzhov, A., Grishin, A.D., Medredev, V.F. and Medredeva, O.P. (1973). Emulsion formation during the flow of two immiscible liquids. Neft. Choz. (in Russian). 8: 5861.

    Google Scholar 

  • Hall, A.R., and Hewitt, G.F. (1993). Application of two-fluid analysis to laminar stratified oil-water flows. International Journal Multiphase Flow. 19: 4 711–717.

    Article  MATH  Google Scholar 

  • Hamad, F.A., Pierscionek, B.K., Brunn, H.H. (2000). A Dual Optical Probe for Volume Fraction, Drop Velocity and Drop Size Measurements in Liquid-Liquid Two-Phase Flow. Meas. Science Technology 11: 1307–1318.

    Article  Google Scholar 

  • Hanks, R. and Christianson, E.B. (1962). The Laminar-Turbulent Transition in Nor- mothermia Flow of Pseudoplastic Fluids in Tubes. AIChE Journal 8 (4): 467–471.

    Google Scholar 

  • Hapanowicz, J., Troniewski, L., and Witczak S. (1997). Flow Patterns of Water-Oil Mixture Flowing in Horizontal Pipes, International Symposium on Liquid-Liquid Two-Phase Flow and Transport Phenomena, Antalya, Turkey, 3–7 Nov.

    Google Scholar 

  • Harmathy, T.Z. (1960). Velocity of Large Drops and Bubbles in Media of Infinite or Restricted Extent. AIChE Journal 6 (2): 281–288.

    Google Scholar 

  • Hasan, A.R., and Kabir, C.S. (1990). A New Model for Two-Phase Oil/Water Flow; Production Log Interpretation and Tubular Calculations. SPE Production Engineering, 193–199.

    Google Scholar 

  • Hasan, A.R. and Kabir, C.S. (1999). A simplified model for oil/water flow in vertical and deviated wellbores, SPE In Proceedings and Facilities, 141: 56–62.

    Google Scholar 

  • Hasson, D., Mann, U., and Nir A. (1970). Annular Flow of Two Immiscible Liquids: I, Mechanisms, Canadian Journal of Chemical Engineering. 48: 514–520.

    Article  Google Scholar 

  • Hasson, D. and Nir, A (1970). Annular Flow of Two Immiscible Liquids: II, Canadian Journal of Chemical Engineering. 48: 521–526.

    Article  Google Scholar 

  • Hasson, D. (1978). Scale Prevention by Annular Flow of an Immiscible Liquid Along the Walls of a Heated Tube, Proc. 6th International Heat Toronto. 4: 391–397.

    Google Scholar 

  • Hill, A.D., and Oolman, T. (1982). Production Logging Tool Behavior in Two-Phase Inclined Flow. JPT 2432–2440.

    Google Scholar 

  • Hinze, J. (1955). Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Process. AIChE Journal 1 (3): 289–295.

    Article  Google Scholar 

  • Hinze, J.O. (1959). Turbulence. McGraw-Hill, New York.

    Google Scholar 

  • Ho, W.S., and Li,N.N. (1994). Core Annular Flow of Liquid Membrane Emulsion, AIChE Journal, 40: 1961–1968.

    Article  Google Scholar 

  • Huang, A., Christodoulou, C., and Joseph, D.D. (1994). Friction Factor and Holdup Studies for Lubricated Pipelining. International Journal Multiphase Flow 20: 48 1494.

    Google Scholar 

  • Hughmark, G.A. (1971). Drop Breakup in Turbulent Pipe Flow. AIChE Journal 4:1000. Joseph, D.D., and Renardy, Y.Y. (1992). Fundamentals of Two Fluids Dynamics Part I and II (edited by F. John, et al), Springer-Verlag.

    Google Scholar 

  • Kitscha, J. and Kocamustafaogullari, G. (1989). Breakup Criteria for Fluid Particles. International Journal Multiphase Flow 15: 573: 588.

    Google Scholar 

  • Kolmogorov, A.N. (1949). On the Breaking of Drops in Turbulent Flow. Doklady Akad. Nauk. 66: 825–828.

    MATH  Google Scholar 

  • Kruyer, J., Redberger, P.J., and Ellis, H.S. (1967). The Pipeline Flow of Capsules–Part 9, Journal Fluid Mechanics. 30: 513–531.

    Article  Google Scholar 

  • Kubie, J. and Gardner, G.C. (1977). Drop Sizes and Drop Dispersion in Straight Horizontal Tubes and in Helical Coils. Chemical Engineering Science 32: 195–202.

    Article  Google Scholar 

  • Kurban, A.P.A. (1997). Stratified Liquid-Liquid Flow. Ph.D. Dissertation, Imperial College, London, U.K.

    Google Scholar 

  • Laflin, G.C., and Oglesby, K.D. (1976). An Experimental Study on the Effect of Flow Rate, Water Fraction, and Gas-Liquid Ratio on Air-Oil-Water Flow in Horizontal Pipes. B.S. Thesis, University of Tulsa.

    Google Scholar 

  • Luhning, R.W. and Sawistowki, H. (1971). Phase inversion in stirred liquid-liquid systems. Proceedings International Solvent Extr. Conference, The Hague, Society of Chemical Industry, London. 883–887.

    Google Scholar 

  • Malinowsky, M.S. (1975). An Experimental Study of Oil-Water and Air-Oil-Water Flowing Mixtures in Horizontal Pipes, M.S. Thesis, University of Tulsa.

    Google Scholar 

  • Masliyah, H. & Shook C.A. (1978). Two-phase laminar zero net flow in circular inclined pipe. The Canadian Journal Chemical Engineering, 56: 165–175.

    Article  Google Scholar 

  • McAulifee, C.D. (1973). Oil-in-Water Emulsions and Their Flow Properties in Porous Meida. Journal Petroleum Technology 727–733.

    Google Scholar 

  • Miesen, R., Beijnon, G., Duijvestijn, P.E.M., Oliemans, R.V.A., and Verheggen, T. (1992). Interfacial Waves in Core-Annular Flow, Journal Fluid Mechanics, 238 (97).

    Google Scholar 

  • Moalem-Maron, D., Brauner, N., and Rovinsky, J. (1995). Analytical Prediction of the Interface Curvature and its Effects on the Stratified Two-Phase Characteristics. Proceedings of the International Symposium Two-Phase Flow Modelling and Experimentation 1: 163–170.

    Google Scholar 

  • Mukherjee, H.K., Brill, J.P. and Beggs H.D. (1981). Experimental Study of Oil-Water Flow in Inclined Pipes, Transactions of the ASME, 103: 56–66.

    Article  Google Scholar 

  • Mukhopadhyay, H. (1977). An Experimental Study of Two-Phase Oil-Water Flow in Inclined Pipes, M.S. Thesis, U. of Tulsa.

    Google Scholar 

  • Nadler, M. Mewes, D. (1997). Flow induced emulsification in the flow of two immiscible liquids in horizontal pipes. International Journal Multiphase Flow 23 (1): 55–68.

    Google Scholar 

  • Ng, T.S., Lawrence, C.J., Hewitt, G.F. (2001). Interface shapes for two-phase laminar stratified flow in a circular pipe. International Journal Multiphase Flow 27: 1301–1311.

    Article  MATH  Google Scholar 

  • Ng, T.S., Lawrence, C.J., Hewitt, G.F. (2002). Laminar stratified pipe flow. International Journal Multiphase Flow 28 (6): 963–996.

    Article  MATH  Google Scholar 

  • Oglesby, K.D. (1979). An Experimental Study on the Effects of Oil Viscosity Mixture Velocity, and Water Fraction on Horizontal Oil-Water Flow, M.S. Thesis, University of Tulsa.

    Google Scholar 

  • Oliemans, R.V.A. (1986). The Lubricating Film Model for Core-Annular Flow. Ph.D. Dissertation, Delft University Press.

    Google Scholar 

  • Oliemans, R.V.A., Ooms, G. (1986). Core-Annular Flow of Oil and Water Through a Pipeline. Multiphase Science and Technology. vol. 2, eds. G.F. Hewitt, J.M. Delhaye, and N. Zuber, Hemisphere Publishing Corporation, Washington.

    Google Scholar 

  • Ong, J., Enden, G. & Popel A.S. (1994). Converging three dimensional Stokes flow of two fluids in a T-type bifurcation, Journal Fluid Mechanics 270: 51–71.

    Article  MATH  Google Scholar 

  • Ooms, G., Segal, A., Van der Wees, A.J., Meerhoff, R., and Oliemans, R.V.A. (1984). Theoretical Model for Core-Annular Flow of a Very Viscous Oil Core and a Water Annulus Through a Horizontal Pipe. International Journal Multiphase Flow, 10: 4160.

    Google Scholar 

  • Ooms, G., Segal, A., Cheung, S.Y., and Oliemans, R.V.A. (1985). Propagation of Long Waves of Finite Amplitude at the Interface of Two Viscous Fluids. International Journal Multiphase Flow 10: 481–502.

    Article  Google Scholar 

  • Pal, R. (1990). On the Flow Characteristics of Highly Concentrated Oil-in-Water Emulsions. The Chemical Engineering Journal 43: 53–57.

    Article  Google Scholar 

  • Pan, L., Jayanti, S., and Hewitt, G.F. (1995). Flow Patterns, phase inversion and pressure gradients in air oil water flow in horizontal pipe, Proceedings of the ICMF’95, Kyotò, Japan, paper FT2.

    Google Scholar 

  • Paul, H.I. and Sleicher Jr., C.A. (1965). The Maximum Stable Drop Size in Turbulent Flow: Effect of Pipe Diameter. Chemical Engineering Science 20: 57–59.

    Article  Google Scholar 

  • Pilehvari, A., Saadevandi, B., Halvaci, M. and Clark, P.E. (1988). Oil/Water Emulsions for Pipeline Transport of Viscous Crude Oil. Paper SPE 18218, SPE. Annual Technology Conference 4 Exhibition Houston.

    Google Scholar 

  • Ranger, K.B. & Davis A.M.J. (1979). Steady pressure driven two-phase stratified laminar flow through a pipe. Canadian Journal of Chemical Engineering 57: 688–691.

    Article  Google Scholar 

  • Rovinsky, J., Brauner, N. and Moalem Maron, D. (1997). Analytical Solution for Laminar Two-Phase Flow in a Fully Eccentric Core-Annular Configuration, International Journal Multiphase Flow 23: 523–542.

    Article  MATH  Google Scholar 

  • Russell, T.W.F. and Charles, M.E. (1959). The Effect of the Less Viscous Liquid in the Laminar Flow of Two Immiscible Liquids. Canadian Journal Chemical Engineering 37: 18–34.

    Article  Google Scholar 

  • Russell, T.W.F., Hodgson, G.W., and Govier, G.W. (1959). Horizontal pipeline flow of oil and water, Can. Journal of Chemical Engineering, 37: 9–17.

    Google Scholar 

  • Semenov, N.L. & Tochigin, A.A. (1962). An analytical study of the separate laminar flow of a two-phase mixture in inclined pipes. Journal Engineering Physics 4: 29.

    Google Scholar 

  • Shacham, M., and Brauner, N. (2002). Numerical solution of non-linear algebraic equations with discontinuities. Comp. and Chemical Engineering. in print.

    Google Scholar 

  • Schramm, L.L. (1992). Emulsions Fundamentals and Applications in the Petroleum Industry. Advances in Applications in the Petroleum Industry, Advances in Chemistry Series 231, American Chemical Society.

    Google Scholar 

  • Scot, P.M. and Knudsen, J.G. (1972). Two-Phase Liquid-Liquid Flow in Pipes. AIChE Symposium Series 68 (118): 38–44.

    Google Scholar 

  • Scott, G.M. (1985). A Study of Two-Phase Liquid-Liquid Flow at Variable Inclinations, M.S. Thesis, The University of Texas.

    Google Scholar 

  • Sherman, P. (1968). Emulsion Science, (editor), Academic Press, New York.

    Google Scholar 

  • Simmons, M.J.H. (2001). Drop size Distribution in Dispersed Liquid-Liquid Pipe Flow. International Journal Multiphase Flow 23: 843–859.

    Article  Google Scholar 

  • Sinclair, A.R. (1970). Rheology of Viscous Fracturing Fluids. Journal Petroleum Technology 711–719.

    Google Scholar 

  • Soleimani, A. (1999). Phase distribution and associated phenomena in oil-water flows in horizontal tubes. Ph.D. Dissertation. Imperial College, University of London.

    Google Scholar 

  • Stalpelberg, H.H., and Mewes, D. (1990). The flow of two immiscible liquids and air in horizontal gas-liquid pipe, Winter Annual Meeting of the ASME, 89–96.

    Google Scholar 

  • Tabeling, P., Pouliquen, O., Theron, B., and Catala G. (1991). Oil water flows in deviated pipes: experimental study and modelling. In Proceedings of the 5th International Conference on Multiphase Flow Production, Cannes, France, June 19–21, 294–306.

    Google Scholar 

  • Tang, Y.P., Himmelblau, D.M. (1963). Velocity Distribution of Isothermal Two-Phase Cocurrent Laminar Flow in Horizontal Rectangular Duct. Chemical Engineering Science. 18: 143–144.

    Article  Google Scholar 

  • Taylor, G.I. (1934). The Formation of Emulsions in Definable Fields of Flow, Proceedings Royal Society London A 146: 501–523.

    Article  Google Scholar 

  • Theissing, P.A. (1980). A Generally Valid Method for Calculating Frictional Pressure Drop in Multiphase Flow. Chemical Ing. Technik. 52: 344–355. (In German).

    Google Scholar 

  • Tidhar, M., Merchuk, J.C., Sembira, A.N., Wolf, D. (1986). Characteristics of a motionless mixer for dispersion of immiscible fluids–II. Phase inversion of liquid-liquid systems. Chemical Engineering Science, 41 (3): 457–462.

    Article  Google Scholar 

  • Trallero, J.L. (1995). Oil-Water Flow Patterns in Horizontal Pipes. Ph.D. Dissertation, The University of Tulsa.

    Google Scholar 

  • Tsouris, C. and Tavlarides, L.L. (1994). Breakage and Coalescence Models for Drops in Turbulent Dispersions. AIChE Journal 40 (3): 395–406.

    Article  Google Scholar 

  • Ullmann, A., Zamir, M. Ludmer, Z., Brauner, N. (2000). Characteristics of Liquid-Liquid Counetr-Current Flow in Inclined Tubes–Application to PTE Process, Proc. of the International Symp on Multiphase Flow and Transport Phenomenon, Antalya, Turkey, Nov. 5–10. ICHMT 112–116.

    Google Scholar 

  • Ullmann, A., Zamir, M., Ludmer L. and Brauner, N. (2001a). Flow Patterns and Flooding Mechanisms in Liquid-Liquid Counter-current Flow in Inclined Tubes, ICMF2001, New Orleans, Louisiana, May 27-June 1.

    Google Scholar 

  • Ullmann, A., Zamir, M., Gat S., and Brauner, N. (2001b). Multi-Value Holdups in Stratified Co-current and Counter-current Inclined Two-Phase Flows, 39th European Two-Phase Flow Group Meeting, Aveiro, Portugal, 17–20.

    Google Scholar 

  • Ullman, A., Zamir, M., Ludmer, Z., and Brauner, N. (2002a). Counter-current Flow of Two Liquid Phases in an Inclined Tube: Part I. Submitted.

    Google Scholar 

  • Ullman, A., Zamir, M., Gat, S., and Brauner, N. (2002b). Counter-current Flow of Two Liquid Phases in an Inclined Tube: Part II. Submitted.

    Google Scholar 

  • Valle, A., and Kvandal, H.K. (1995). Pressure drop and dispersion characteristics of separated oil-water flow. In Celata, G.P., and Shah, R.K. Edizioni ETS, eds., In Proceedings of the International Symposium on Two-Phase Flow Modelling and Experimentation, Oct. 9–11, Rome, Italy, 583–591.

    Google Scholar 

  • Valle, A., and Utvik, O.H. (1997). Pressure drop, flow pattern and slip for two phase crude oil/water flow: experiments and model predictions, International Symposium on Liquid-Liquid Two-Phase Flow and Transport Phenomena, Antalya, Turkey, 3–7 Nov.

    Google Scholar 

  • Vedapuri, D., Bessette, D. and Jepson, W.P. (1997). A segregated flow model to predict water layer thickness in oil-water flows in horizontal and slightly inclined pipelines, in In Proceedings Multiphase’97, Cannes, France June 18–20, 75–105.

    Google Scholar 

  • Vigneaux, P., Chenois, P. and Hulin, J.P. (1988). Liquid-Liquid Flows in an Inclined Pipe. AIChE Journal 34: 781–789.

    Article  Google Scholar 

  • Wu, H.L., Duijrestijn, P.E.M. (1986). Core-Annular Flow: A Solution to Pipeline Transportation of Heavy Crude Oils. Review Tec. INTERVER, 6 (1): 17–22.

    Google Scholar 

  • Yeh, G. Haynie Jr., F.H., Moses, R.E. (1964). Phase-Volume Relationship at the Point of Phase Inversion in Liquid Dispersion. AIChE Journal. 10 (2): 260–265.

    Google Scholar 

  • Yeo, L.Y., Mater, O.K., Perez de Ortiz, E.S., Hewitt, G.F. (2000). Phase inversion and associated phenomena. Multiphase Science é.4 Technology, 12: 51–116.

    Google Scholar 

  • Zamir, M. (1998). Multistage Extraction in an Inclined Column Based on a Phase Transition of Critical-Solution Mixtures. Ph.D. Dissertation.

    Google Scholar 

  • Zavareh, F., Hill, A.D. and Podio, A.L. (1988). Flow Regimes in Vertical and Inclined Oil/Water Flow in Pipes, Paper SPE 18215, Presented at the 63rd Annual Technical Conference and Exhibition, Houston, Texas, Oct. 2–5.

    Google Scholar 

  • Zigrang D.I. and Sylvester, N.D. (1985). A Review of Explicit Friction Factor Equations. Journal Energy Res. Technology 107: 280–283.

    Article  Google Scholar 

  • Zuber, N. and Findlay, I. (1965). Trans. J. Heat Transfer. ASME 87: 453–468.

    Google Scholar 

  • Zukoski, E.E. (1966). Influence of Viscosity, Surface Tension and Inclination Angle on Motion of Long Bubbles in Closed Tubes. Journal Fluid Mechanics 25: 821–837.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Brauner, N. (2003). Liquid-Liquid Two-Phase Flow Systems. In: Bertola, V. (eds) Modelling and Experimentation in Two-Phase Flow. International Centre for Mechanical Sciences, vol 450. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2538-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2538-0_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-20757-4

  • Online ISBN: 978-3-7091-2538-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics