Skip to main content

Autophagy and Tumor Cell Metabolism

  • Chapter
Tumor Cell Metabolism

Abstract

Macroautophagy is a lysosomal degradative process for cellular components that is regulated by oncogenes and tumor suppressors. Macroautophagy plays a major role in cell homeostasis and in response to stress, where it acts as a cell survival mechanism. Indeed, during periods of starvation, stimulation of the autophagic pathway fuels cells with nutrients via lysosomal recycling to maintain metabolic activity and to respond to the demand for energy. The role of macroautophagy in cancer is complex and context dependent. Defective macroautophagy favors DNA damage and genomic instability, whereas normal macroautophagy protects cancer cells against metabolic stress by providing what is required to maintain metabolism in cancer cells. This chapter will describe the interplay between macroautophagy and metabolism and its regulation by metabolites, including those that control the posttranslational acetylation potential of proteins. The last part of the chapter will concern the role of autophagy in the maintenance and self-renewal of cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bellot G, Garcia-Medina R et al (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29(10):2570–2581

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bensaad K, Tsuruta A et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120

    CAS  PubMed  Google Scholar 

  • Black JC, Mosley A et al (2008) The SIRT2 deacetylase regulates autoacetylation of p300. Mol Cell 32(3):449–455

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boccitto M, Kalb RG (2011) Regulation of Foxo-dependent transcription by post-translational modifications. Curr Drug Targets 12(9):1303–1310

    PubMed Central  CAS  PubMed  Google Scholar 

  • Botti J, Djavaheri-Mergny M et al (2006) Autophagy signaling and the cogwheels of cancer. Autophagy 2(2):67–73

    CAS  PubMed  Google Scholar 

  • Boya P, Reggiori F et al (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15(7):713–720

    CAS  PubMed  Google Scholar 

  • Cheong H, Lindsten T et al (2011) Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci USA 108(27):11121–11126

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheong H, Lu C et al (2012) Therapeutic targets in cancer cell metabolism and autophagy. Nat Biotechnol 30(7):671–678

    CAS  PubMed  Google Scholar 

  • Chiavarina B, Whitaker-Menezes D et al (2010) HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: autophagy drives compartment-specific oncogenesis. Cell Cycle 9(17):3534–3551

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choi AM, Ryter SW et al (2013) Autophagy in human health and disease. N Engl J Med 368(7):651–662

    CAS  PubMed  Google Scholar 

  • Creppe C, Malinouskaya L et al (2009) Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell 136(3):551–564

    CAS  PubMed  Google Scholar 

  • Cufi S, Vazquez-Martin A et al (2011) Autophagy positively regulates the CD44(+) CD24(-/low) breast cancer stem-like phenotype. Cell Cycle 10(22):3871–3885

    CAS  PubMed  Google Scholar 

  • Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 24(2):68–72

    CAS  PubMed  Google Scholar 

  • DeBerardinis RJ (2008) Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet Med 10(11):767–777

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5(6):527–549

    PubMed Central  CAS  PubMed  Google Scholar 

  • Di Vizio D, Morello M et al (2009) An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation. Cell Cycle 8(15):2420–2424

    PubMed Central  PubMed  Google Scholar 

  • Dong H, Czaja MJ (2011) Regulation of lipid droplets by autophagy. Trends Endocrinol Metab 22(6):234–240

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eisenberg T, Knauer H et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305–1314

    CAS  PubMed  Google Scholar 

  • Eng CH, Abraham RT (2011) The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming. Oncogene 30(47):4687–4696

    CAS  PubMed  Google Scholar 

  • Eng CH, Yu K et al (2010) Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 3(119):ra31

    PubMed  Google Scholar 

  • Espina V, Liotta LA (2011) What is the malignant nature of human ductal carcinoma in situ? Nat Rev Cancer 11(1):68–75

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fullgrabe J, Lynch-Day MA et al (2013) The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature 500(7463):468–471

    PubMed Central  PubMed  Google Scholar 

  • Galavotti S, Bartesaghi S et al (2013) The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells. Oncogene 32(6):699–712

    CAS  PubMed  Google Scholar 

  • Geeraert C, Ratier A et al (2010) Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation. J Biol Chem 285(31):24184–24194

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gong C, Bauvy C et al (2013) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32(18):2261–2272, 2272e 1–11

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gong C, Song E et al (2012) The roles of BECN1 and autophagy in cancer are context dependent. Autophagy 8(12):1853–1855

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gordan JD, Thompson CB et al (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12(2):108–113

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gronke S, Mildner A et al (2005) Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 1(5):323–330

    PubMed  Google Scholar 

  • Guan JL, Simon AK et al (2013) Autophagy in stem cells. Autophagy 9(6):830–849

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guo JY, Chen HY et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25(5):460–470

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guo JY, Karsli-Uzunbas G et al (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27(13):1447–1461

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hamasaki M, Shibutani ST et al (2013) Up-to-date membrane biogenesis in the autophagosome formation. Curr Opin Cell Biol 25:455–460

    CAS  PubMed  Google Scholar 

  • Han Y, Jin YH et al (2008) Acetylation of Sirt2 by p300 attenuates its deacetylase activity. Biochem Biophys Res Commun 375(4):576–580

    CAS  PubMed  Google Scholar 

  • Hariharan N, Maejima Y et al (2010) Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 107(12):1470–1482

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu Y, Fisher JB et al (2009) Homozygous disruption of the Tip60 gene causes early embryonic lethality. Dev Dyn 238(11):2912–2921

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jeong H, Then F et al (2009) Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 137(1):60–72

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    CAS  PubMed  Google Scholar 

  • Kawauchi K, Araki K et al (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10(5):611–618

    CAS  PubMed  Google Scholar 

  • Ko YH, Lin Z et al (2011) Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: implications for preventing chemotherapy resistance. Cancer Biol Ther 12(12):1085–1097

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kochl R, Hu XW et al (2006) Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 7(2):129–145

    CAS  PubMed  Google Scholar 

  • Koukourakis MI, Giatromanolaki A et al (2010) Beclin 1 over- and underexpression in colorectal cancer: distinct patterns relate to prognosis and tumour hypoxia. Br J Cancer 103(8):1209–1214

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kroemer G, Marino G et al (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kume S, Uzu T et al (2010) Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120(4):1043–1055

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee H, Paik SG (2006) Regulation of BNIP3 in normal and cancer cells. Mol Cells 21(1):1–6

    CAS  PubMed  Google Scholar 

  • Lee IH, Cao L et al (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 105(9):3374–3379

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee IH, Finkel T (2009) Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 284(10):6322–6328

    CAS  PubMed  Google Scholar 

  • Leone RD, Amaravadi RK (2013) Autophagy: a targetable linchpin of cancer cell metabolism. Trends Endocrinol Metab 24(4):209–217

    CAS  PubMed  Google Scholar 

  • Lin SY, Li TY et al (2012) GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 336(6080):477–481

    CAS  PubMed  Google Scholar 

  • Liu EY, Ryan KM (2012) Autophagy and cancer-issues we need to digest. J Cell Sci 125(Pt 10):2349–2358

    PubMed  Google Scholar 

  • Lock R, Roy S et al (2011) Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 22(2):165–178

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lorin S, Hamai A et al (2013) Autophagy regulation and its role in cancer. Semin Cancer Biol 23:361–379

    CAS  PubMed  Google Scholar 

  • Maes H, Rubio N et al (2013) Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med 19(7):428–446

    CAS  PubMed  Google Scholar 

  • Maiuri MC, Tasdemir E et al (2009) Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 16(1):87–93

    CAS  PubMed  Google Scholar 

  • Mammucari C, Milan G et al (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471

    CAS  PubMed  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mantovani A, Romero P et al (2008) Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371(9614):771–783

    CAS  PubMed  Google Scholar 

  • Marino G, Kroemer G (2010) Ammonia: a diffusible factor released by proliferating cells that induces autophagy. Sci Signal 3(124):pe19

    PubMed  Google Scholar 

  • Martinez-Outschoorn UE, Sotgia F et al (2012) Power surge: supporting cells “fuel” cancer cell mitochondria. Cell Metab 15(1):4–5

    CAS  PubMed  Google Scholar 

  • Martinez-Outschoorn UE, Trimmer C et al (2009) Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle 9(17):3515–3533

    Google Scholar 

  • Mathew R, Karantza-Wadsworth V et al (2007) Role of autophagy in cancer. Nat Rev Cancer 7(12):961–967

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matoba S, Kang JG et al (2006) p53 regulates mitochondrial respiration. Science 312(5780):1650–1653

    CAS  PubMed  Google Scholar 

  • Matsuzaki H, Daitoku H et al (2005) Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA 102(32):11278–11283

    PubMed Central  CAS  PubMed  Google Scholar 

  • McAllister SS, Weinberg RA (2010) Tumor-host interactions: a far-reaching relationship. J Clin Oncol 28(26):4022–4028

    PubMed  Google Scholar 

  • McEwan DG, Dikic I (2011) The three musketeers of autophagy: phosphorylation, ubiquitylation and acetylation. Trends Cell Biol 21(4):195–201

    PubMed Central  CAS  PubMed  Google Scholar 

  • Michaud M, Martins I et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334(6062):1573–1577

    CAS  PubMed  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741

    CAS  PubMed  Google Scholar 

  • Mizushima N, Levine B et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T et al (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    CAS  PubMed  Google Scholar 

  • Moreau K, Renna M et al (2013) Connections between SNAREs and autophagy. Trends Biochem Sci 38(2):57–63

    CAS  PubMed  Google Scholar 

  • Morselli E, Marino G et al (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 192(4):615–629

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mortensen M, Soilleux EJ et al (2011) The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 208(3):455–467

    PubMed Central  CAS  PubMed  Google Scholar 

  • North BJ, Marshall BL et al (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11(2):437–444

    CAS  PubMed  Google Scholar 

  • Oliver L, Hue E et al (2012) Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells. Stem Cells Dev 21(15):2779–2788

    CAS  PubMed  Google Scholar 

  • Pan H, Cai N et al (2013) Autophagic control of cell ‘stemness’. EMBO Mol Med 5(3):327–331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pavlides S, Tsirigos A et al (2010) The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 9(17):3485–3505

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pavlides S, Vera I et al (2012) Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal 16(11):1264–1284

    PubMed Central  CAS  PubMed  Google Scholar 

  • Phadwal K, Watson AS et al (2013) Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging. Cell Mol Life Sci 70(1):89–103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330(6009):1344–1348

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ravikumar B, Sarkar S et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435

    CAS  PubMed  Google Scholar 

  • Rouschop KM, van den Beucken T et al (2010) The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 120(1):127–141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rubinsztein DC, Codogno P et al (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11(9):709–730

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salemi S, Yousefi S et al (2012) Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res 22(2):432–435

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scarlatti F, Granata R et al (2009) Does autophagy have a license to kill mammalian cells? Cell Death Differ 16(1):12–20

    CAS  PubMed  Google Scholar 

  • Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5):625–634

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sengupta A, Molkentin JD et al (2009) FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem 284(41):28319–28331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shyh-Chang N, Daley GQ et al (2013) Stem cell metabolism in tissue development and aging. Development 140(12):2535–2547

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh BN, Kumar D et al (2012) Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of PI3K/Akt/mTOR pathway in human pancreatic cancer stem cells. Biochem Pharmacol 84(9):1154–1163

    CAS  PubMed  Google Scholar 

  • Singh R, Cuervo AM (2012) Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012:282041

    PubMed Central  PubMed  Google Scholar 

  • Singh R, Kaushik S et al (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sotgia F, Martinez-Outschoorn UE et al (2011) Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res 13(4):213

    PubMed Central  PubMed  Google Scholar 

  • Tzivion G, Dobson M et al (2011) FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta 1813(11):1938–1945

    CAS  PubMed  Google Scholar 

  • Van Der Heide LP, Hoekman MF et al (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380(Pt 2):297–309

    Google Scholar 

  • Wang F, Tong Q (2009) SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARgamma. Mol Biol Cell 20(3):801–808

    PubMed Central  CAS  PubMed  Google Scholar 

  • Webster KA, Graham RM et al (2005) BNip3 and signal-specific programmed death in the heart. J Mol Cell Cardiol 38(1):35–45

    CAS  PubMed  Google Scholar 

  • White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12(6):401–410

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu KN, Queenan M et al (2011) Loss of stromal caveolin-1 expression in malignant melanoma metastases predicts poor survival. Cell Cycle 10(24):4250–4255

    CAS  PubMed  Google Scholar 

  • Xie R, Nguyen S et al (2010) Acetylated microtubules are required for fusion of autophagosomes with lysosomes. BMC Cell Biol 11:89

    PubMed Central  PubMed  Google Scholar 

  • Xing C, Zhu B et al (2008) Class I phosphatidylinositol 3-kinase inhibitor LY294002 activates autophagy and induces apoptosis through p53 pathway in gastric cancer cell line SGC7901. Acta Biochim Biophys Sin (Shanghai) 40(3):194–201

    CAS  Google Scholar 

  • Yamaguchi M, Noda NN et al (2010) Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J Biol Chem 285(38):29599–29607

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang S, Kimmelman AC (2011) A critical role for autophagy in pancreatic cancer. Autophagy 7(8):912–913

    PubMed  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12(9):814–822

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yi C, Ma M et al (2012) Function and molecular mechanism of acetylation in autophagy regulation. Science 336(6080):474–477

    CAS  PubMed  Google Scholar 

  • Yue W, Hamai A et al (2013) Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy 9(5):714–729

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Yuan Z et al (2007) HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell 27(2):197–213

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao S, Xu W et al (2010a) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Y, Yang J et al (2010b) Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 12(7):665–675

    CAS  PubMed  Google Scholar 

  • Zimmermann R, Strauss JG et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306(5700):1383–1386

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in P. Codogno’s laboratory is supported by institutional funding from the Institut National de la Santé et de la Recherche Medicale (INSERM) and grants from the Agence Nationale de la Recherche (ANR) and the Institut National du Cancer (INCa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Codogno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Hamaï, A., Botti, J., Mehrpour, M., Codogno, P. (2015). Autophagy and Tumor Cell Metabolism. In: Mazurek, S., Shoshan, M. (eds) Tumor Cell Metabolism. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1824-5_3

Download citation

Publish with us

Policies and ethics