Skip to main content

The Holonomic Toolkit

  • Chapter
  • First Online:
Computer Algebra in Quantum Field Theory

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

This is an overview over standard techniques for holonomic functions, written for readers who are new to the subject. We state the definition for holonomy in a couple of different ways, including some concrete special cases as well as a more abstract and more general version. We give a collection of standard examples and state several fundamental properties of holonomic objects. Two techniques which are most useful in applications are explained in some more detail: closure properties, which can be used to prove identities among holonomic functions, and guessing, which can be used to generate plausible conjectures for equations satisfied by a given function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 9th edn. Dover Publications, Inc., New York (1972)

    MATH  Google Scholar 

  2. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge/New York (1999)

    Google Scholar 

  3. Beckermann, B., Labahn, G.: Fraction-free computation of matrix rational interpolants and matrix gcds. SIAM J. Matrix Anal. Appl. 22(1), 114–144 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernstein, J.N.: The analytic continuation of generalized functions with respect to a parameter. Funct. Anal. Appl. 6(4), 26–40 (russian); 273–285 (english translation) (1972)

    Google Scholar 

  5. Bjork, J.E.: Rings of Differential Operators. North-Holland, Amsterdam/New York (1979)

    Google Scholar 

  6. Blümlein, J., Kauers, M., Klein, S., Schneider, C.: Determining the closed forms of the \(o(a_{s}^{3})\) anomalous dimension and Wilson coefficients from Mellin moments by means of computer algebra. Comput. Phys. Commun. 180(11), 2143–2165 (2009)

    Article  ADS  MATH  Google Scholar 

  7. Blümlein, J., Klein, S., Schneider, C., Stan, F.: A symbolic summation approach to Feynman integral calculus. J. Symb. Comput. 47(10), 1267–1289 (2012)

    Article  MATH  Google Scholar 

  8. Bostan, A., Kauers, M.: Automatic classification of restricted lattice walks. In: Proceedings of FPSAC’09, Hagenberg, pp. 201–215 (2009)

    Google Scholar 

  9. Bostan, A., Kauers, M., with an appendix by van Hoeij, M.: The complete generating function for Gessel walks is algebraic. Proc. AMS 138(9), 3063–3078 (2010)

    Article  MATH  Google Scholar 

  10. Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra. Theor. Comput. Sci. 157(1), 3–33 (1996)

    Article  MATH  Google Scholar 

  11. Chen, S., Kauers, M.: Order-degree curves for hypergeometric creative telescoping. In: Proceedings of ISSAC’12, Grenoble, pp. 122–129. ACM (2012). ISBN 978-1-4503-1269-1

    Google Scholar 

  12. Chen, S., Kauers, M.: Trading order for degree in creative telescoping. J. Symb. Comput. 47(8), 968–995 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chudnovsky, D.V., Chudnovsky, G.V.: Computer algebra in the service of mathematical physics and number theory. In: Chudnovsky, D.V., Jenks, R.D. (eds.) Computers in Mathematics. Lecture Notes in Pure and Applied Mathematics, vol. 125, pp. 109–232. Dekker/Stanford University (1986). ISBN 0-8247-8341-7

    Google Scholar 

  14. Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions. Discret. Math. 217, 115–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symb. Comput. 26, 187–227 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chyzak, F., Kauers, M., Salvy, B.: A non-holonomic systems approach to special function identities. In: May, J. (ed.) Proceedings of ISSAC’09, Seoul, pp. 111–118. ACM (2009). ISBN 978-1-4503-1269-1

    Google Scholar 

  17. Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge/New York (2009)

    Book  MATH  Google Scholar 

  19. Gerhold, S.: Combinatorial sequences: non-holonomicity and inequalities. Ph.D. thesis, RISC-Linz, Johannes Kepler Universität Linz (2005)

    Google Scholar 

  20. Hebisch, W., Rubey, M.: Extended Rate, more GFUN. J. Symb. Comput. 46(8), 889–903 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jaroschek, M., Kauers, M., Chen, S., Singer, M.F.: Desingularization explains order-degree curves for Ore operators. Technical report 1301.0917, ArXiv (2013)

    Google Scholar 

  22. Kauers, M.: Fast solvers for dense linear systems. Nucl. Phys. B (Proc. Suppl.) 183, 245–250 (2008)

    Article  ADS  Google Scholar 

  23. Kauers, M.: Guessing handbook. Technical report 09–07, RISC-Linz (2009)

    Google Scholar 

  24. Kauers, M.: A mathematica package for computing asymptotic expansions of solutions of p-finite recurrence equations. Technical report 11–04, RISC-Linz (2011)

    Google Scholar 

  25. Kauers, M., Paule, P.: The Concrete Tetrahedron. Springer, Wein/New York (2011)

    Book  MATH  Google Scholar 

  26. Kauers, M., Zeilberger, D.: The computational challenge of enumerating high dimensional rook walks. Adv. Appl. Math. 47(4), 813–819 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Koutschan, C.: Advanced applications of the holonomic systems approach. Ph.D. thesis, RISC-Linz, Johannes Kepler Universität Linz (2009)

    Google Scholar 

  28. Koutschan, C.: HolonomicFunctions (User’s Guide). Technical report 10–01, RISC report series, University of Linz, Austria (2010). URL http://www.risc.uni-linz.ac.at/research/combinat/software/HolonomicFunctions/

    Google Scholar 

  29. Mallinger, C.: Algorithmic manipulations and transformations of univariate holonomic functions and sequences. Master’s thesis, Johannes Kepler University, Linz (1996)

    Google Scholar 

  30. Mezzarobba, M., Salvy, B.: Effective bounds for P-recursive sequences. J. Symb. Comput. 45(10), 1075–1096 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Salvy, B.: D-finiteness: algorithms and applications. In: Kauers, M. (ed.) Proceedings of ISSAC’05, Beijing, pp. 2–3. ACM (2005). ISBN 978-1-4503-1269-1. Invited talk

    Google Scholar 

  32. Salvy, B., Zimmermann, P.: Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Math. Softw. 20(2), 163–177 (1994)

    Article  MATH  Google Scholar 

  33. Sloane, N.J.: The on-line encyclopedia of integer sequences. http://www.oeis.org/

  34. Stanley, R.P.: Differentiably finite power series. Eur. J. Comb. 1, 175–188 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stanley, R.P.: Enumerative Combinatorics, Volume 2. Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  36. van der Hoeven, J.: Fast evaluation of holonomic functions. Theor. Comput. Sci. 210(1), 199–216 (1999)

    Article  MATH  Google Scholar 

  37. van der Hoeven, J.: Efficient accelero-summation of holonomic functions. J. Symb. Comput. 42(4), 389–428 (2007)

    Article  MATH  Google Scholar 

  38. van der Poorten, A.: A proof that Euler missed… – Apéry’s proof of the irrationality for ζ(3). Math. Intell. 1, 195–203 (1979)

    Article  MATH  Google Scholar 

  39. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge/New York (1999)

    MATH  Google Scholar 

  40. Wilf, H.S., Zeilberger, D.: An algorithmic proof theory for hypergeometric (ordinary and q) multisum/integral identities. Invent. Math. 108, 575–633 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  41. Wimp, J., Zeilberger, D.: Resurrecting the asymptotics of linear recurrences. J. Math. Anal. Appl. 111, 162–176 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zeilberger, D.: A holonomic systems approach to special function identities. J. Comput. Appl. Math. 32, 321–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Kauers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Kauers, M. (2013). The Holonomic Toolkit. In: Schneider, C., Blümlein, J. (eds) Computer Algebra in Quantum Field Theory. Texts & Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1616-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1616-6_5

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1615-9

  • Online ISBN: 978-3-7091-1616-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics