Skip to main content

Regulation of the Sphingosine Kinase/Sphingosine 1-Phosphate Pathway

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 216))

Abstract

Sphingolipids have emerged as pleiotropic signaling molecules with roles in numerous cellular and biological functions. Defining the regulatory mechanisms governing sphingolipid metabolism is crucial in order to develop a complete understanding of the biological functions of sphingolipid metabolites. The sphingosine kinase/ sphingosine 1-phosphate pathway was originally thought to function in the irreversible breakdown of sphingoid bases; however, in the last few decades it has materialized as an extremely important signaling pathway involved in a plethora of cellular events contributing to both normal and pathophysiological events. Recognition of the SK/S1P pathway as a second messaging system has aided in the identification of many mechanisms of its regulation; however, a cohesive, global understanding of the regulatory mechanisms controlling the SK/S1P pathway is lacking. In this chapter, the role of the SK/S1P pathway as a second messenger is discussed, and its role in mediating TNF-α- and EGF-induced biologies is examined. This work provides a comprehensive look into the roles and regulation of the sphingosine kinase/ sphingosine 1-phosphate pathway and highlights the potential of the pathway as a therapeutic target.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alemany R, van Koppen CJ et al (2007) Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch Pharmacol 374(5–6):413–428

    Article  PubMed  CAS  Google Scholar 

  • Alvarez SE, Harikumar KB et al (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465(7301):1084–1088

    Article  PubMed  CAS  Google Scholar 

  • Anelli V, Gault CR et al (2008) Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. J Biol Chem 283(6):3365–3375

    Article  PubMed  CAS  Google Scholar 

  • Baker DA, Barth J et al (2010) Genetic sphingosine kinase 1 deficiency significantly decreases synovial inflammation and joint erosions in murine TNF-alpha-induced arthritis. J Immunol 185(4):2570–2579

    Article  PubMed  CAS  Google Scholar 

  • Baker DA, Obeid LM et al (2011) Impact of sphingosine kinase on inflammatory pathways in fibroblast-like synoviocytes. Inflamm Allergy Drug Targets 10(6):464–471

    Article  PubMed  CAS  Google Scholar 

  • Barr RK, Lynn HE et al (2008) Deactivation of sphingosine kinase 1 by protein phosphatase 2A. J Biol Chem 283(50):34994–35002

    Article  PubMed  CAS  Google Scholar 

  • Barth BM, Gustafson SJ et al (2011) Ceramide kinase regulates TNFalpha-stimulated NADPH oxidase activity and eicosanoid biosynthesis in neuroblastoma cells. Cell Signal 24(6): 1126–1133

    Article  PubMed  CAS  Google Scholar 

  • Barth BM, Gustafson SJ et al (2012) Neutral sphingomyelinase activation precedes NADPH oxidase-dependent damage in neurons exposed to the proinflammatory cytokine tumor necrosis factor-alpha. J Neurosci Res 90(1):229–242

    Article  PubMed  CAS  Google Scholar 

  • Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50(Suppl): S91–S96

    Article  PubMed  CAS  Google Scholar 

  • Berdyshev EV, Gorshkova I et al (2011) Intracellular S1P generation is essential for S1P-induced motility of human lung endothelial cells: role of sphingosine kinase 1 and S1P lyase. PLoS One 6(1):e16571

    Article  PubMed  CAS  Google Scholar 

  • Billich A, Bornancin F et al (2005) Basal and induced sphingosine kinase 1 activity in A549 carcinoma cells: function in cell survival and IL-1beta and TNF-alpha induced production of inflammatory mediators. Cell Signal 17(10):1203–1217

    Article  PubMed  CAS  Google Scholar 

  • Billich A, Urtz N et al (2009) Sphingosine kinase 1 is essential for proteinase-activated receptor-1 signalling in epithelial and endothelial cells. Int J Biochem Cell Biol 41(7):1547–1555

    Article  PubMed  CAS  Google Scholar 

  • Bode C, Sensken SC et al (2010) Erythrocytes serve as a reservoir for cellular and extracellular sphingosine 1-phosphate. J Cell Biochem 109(6):1232–1243

    PubMed  CAS  Google Scholar 

  • Bretscher A (1989) Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. J Cell Biol 108(3): 921–930

    Article  PubMed  CAS  Google Scholar 

  • Bu S, Yamanaka M et al (2006) Dihydrosphingosine 1-phosphate stimulates MMP1 gene expression via activation of ERK1/2-Ets1 pathway in human fibroblasts. FASEB J 20(1):184–186

    PubMed  CAS  Google Scholar 

  • Camerer E, Regard JB et al (2009) Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest 119(7):1871–1879

    PubMed  CAS  Google Scholar 

  • Candela M, Barker SC et al (1991) Sphingosine synergistically stimulates tumor necrosis factor alpha-induced prostaglandin E2 production in human fibroblasts. J Exp Med 174(6): 1363–1369

    Article  PubMed  CAS  Google Scholar 

  • Cencetti F, Bernacchioni C et al (2010) Transforming growth factor-beta1 induces transdifferentiation of myoblasts into myofibroblasts via up-regulation of sphingosine kinase-1/S1P3 axis. Mol Biol Cell 21(6):1111–1124

    Article  PubMed  CAS  Google Scholar 

  • Chandru H, Boggaram V (2007) The role of sphingosine 1-phosphate in the TNF-alpha induction of IL-8 gene expression in lung epithelial cells. Gene 391(1–2):150–160

    Article  PubMed  CAS  Google Scholar 

  • Chao HH, Chen CH et al (2010) L-Carnitine attenuates angiotensin II-induced proliferation of cardiac fibroblasts: role of NADPH oxidase inhibition and decreased sphingosine-1-phosphate generation. J Nutr Biochem 21(7):580–588

    Article  PubMed  CAS  Google Scholar 

  • Chen XL, Grey JY et al (2004) Sphingosine kinase-1 mediates TNF-alpha-induced MCP-1 gene expression in endothelial cells: upregulation by oscillatory flow. Am J Physiol Heart Circ Physiol 287(4):H1452–H1458

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Carroll HP et al (2006) The newest interleukins: recent additions to the ever-growing cytokine family. Vitam Horm 74:207–228

    Article  PubMed  CAS  Google Scholar 

  • Dakroub Z, Kreydiyyeh SI (2012) Sphingosine-1-phosphate is a mediator of TNF-alpha action on the Na+/K + ATPase in HepG2 cells. J Cell Biochem 113(6):2077–2085

    Article  PubMed  CAS  Google Scholar 

  • De Palma C, Meacci E et al (2006) Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium. Arterioscler Thromb Vasc Biol 26(1):99–105

    Article  PubMed  CAS  Google Scholar 

  • De Palma C, Falcone S et al (2008) Endothelial nitric oxide synthase overexpression by neuronal cells in neurodegeneration: a link between inflammation and neuroprotection. J Neurochem 106(1):193–204

    Article  PubMed  CAS  Google Scholar 

  • Delcourt N, Bockaert J et al (2007) GPCR-jacking: from a new route in RTK signalling to a new concept in GPCR activation. Trends Pharmacol Sci 28(12):602–607

    Article  PubMed  CAS  Google Scholar 

  • Denker SP, Huang DC et al (2000) Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol Cell 6(6):1425–1436

    Article  PubMed  CAS  Google Scholar 

  • Derrett-Smith EC, Dooley A et al (2010) Systemic vasculopathy with altered vasoreactivity in a transgenic mouse model of scleroderma. Arthritis Res Ther 12(2):R69

    Article  PubMed  CAS  Google Scholar 

  • Doll F, Pfeilschifter J et al (2005) The epidermal growth factor stimulates sphingosine kinase-1 expression and activity in the human mammary carcinoma cell line MCF7. Biochim Biophys Acta 1738(1–3):72–81

    PubMed  Google Scholar 

  • Doll F, Pfeilschifter J et al (2007) Prolactin upregulates sphingosine kinase-1 expression and activity in the human breast cancer cell line MCF7 and triggers enhanced proliferation and migration. Endocr Relat Cancer 14(2):325–335

    Article  PubMed  CAS  Google Scholar 

  • Donati C, Nincheri P et al (2007) Tumor necrosis factor-alpha exerts pro-myogenic action in C2C12 myoblasts via sphingosine kinase/S1P(2) signaling. FEBS Lett 581(23):4384–4388

    Article  PubMed  CAS  Google Scholar 

  • Du J, Zeng C et al (2012) LPS and TNF-alpha induce expression of sphingosine-1-phosphate receptor-2 in human microvascular endothelial cells. Pathol Res Pract 208(2):82–88

    Article  PubMed  CAS  Google Scholar 

  • El-Shewy HM, Johnson KR et al (2006) Insulin-like growth factors mediate heterotrimeric G protein-dependent ERK1/2 activation by transactivating sphingosine-1-phosphate receptors. J Biol Chem 281(42):31399–31407

    Article  PubMed  CAS  Google Scholar 

  • El-Shewy HM, Abdel-Samie SA et al (2011) Phospholipase C and protein kinase C-beta 2 mediate insulin-like growth factor II-dependent sphingosine kinase 1 activation. Mol Endocrinol 25(12): 2144–2156

    Article  PubMed  CAS  Google Scholar 

  • Estrada-Bernal A, Lawler SE et al (2011) The role of sphingosine kinase-1 in EGFRvIII-regulated growth and survival of glioblastoma cells. J Neurooncol 102(3):353–366

    Article  PubMed  CAS  Google Scholar 

  • Fischer I, Alliod C et al (2011) Sphingosine kinase 1 and sphingosine 1-phosphate receptor 3 are functionally upregulated on astrocytes under pro-inflammatory conditions. PLoS One 6(8):e23905

    Article  PubMed  CAS  Google Scholar 

  • Fletcher JI, Haber M et al (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10(2):147–156

    Article  PubMed  CAS  Google Scholar 

  • Francy JM, Nag A et al (2007) Sphingosine kinase 1 expression is regulated by signaling through PI3K, AKT2, and mTOR in human coronary artery smooth muscle cells. Biochim Biophys Acta 1769(4):253–265

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Okada T et al (2004) Delta-catenin/NPRAP (neural plakophilin-related armadillo repeat protein) interacts with and activates sphingosine kinase 1. Biochem J 382(Pt 2):717–723

    PubMed  CAS  Google Scholar 

  • Fukuda Y, Aoyama Y et al (2004) Identification of PECAM-1 association with sphingosine kinase 1 and its regulation by agonist-induced phosphorylation. Biochim Biophys Acta 1636(1):12–21

    Article  PubMed  CAS  Google Scholar 

  • Gao P, Smith CD (2011) Ablation of sphingosine kinase-2 inhibits tumor cell proliferation and migration. Mol Cancer Res 9(11):1509–1519

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Fan Y et al (2012) Optimization on preparation condition of epimedium polysaccharide liposome and evaluation of its adjuvant activity. Int J Biol Macromol 50(1):207–213

    Article  PubMed  CAS  Google Scholar 

  • Garofalo M, Romano G et al (2012) EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 18(1): 74–82

    Article  CAS  Google Scholar 

  • Gault CR, Obeid LM et al (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1–23

    Article  PubMed  CAS  Google Scholar 

  • Gault CR, Eblen ST et al (2012) Oncogenic K-Ras regulates bioactive sphingolipids in a sphingosine kinase 1 dependent manner. J Biol Chem 287(38):31794–31803

    Article  PubMed  CAS  Google Scholar 

  • Ghosh TK, Bian J et al (1990) Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science 248(4963):1653–1656

    Article  PubMed  CAS  Google Scholar 

  • Hait NC, Sarkar S et al (2005) Role of sphingosine kinase 2 in cell migration toward epidermal growth factor. J Biol Chem 280(33):29462–29469

    Article  PubMed  CAS  Google Scholar 

  • Hait NC, Bellamy A et al (2007) Sphingosine kinase type 2 activation by ERK-mediated phosphorylation. J Biol Chem 282(16):12058–12065

    Article  PubMed  CAS  Google Scholar 

  • Hait NC, Allegood J et al (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325(5945):1254–1257

    Article  PubMed  CAS  Google Scholar 

  • Hammad SM (2011) Blood sphingolipids in homeostasis and pathobiology. Adv Exp Med Biol 721:57–66

    Article  PubMed  CAS  Google Scholar 

  • Hammad SM, Taha TA et al (2006) Oxidized LDL immune complexes induce release of sphingosine kinase in human U937 monocytic cells. Prostaglandins Other Lipid Mediat 79(1–2):126–140

    Article  PubMed  CAS  Google Scholar 

  • Hammad SM, Crellin HG et al (2008) Dual and distinct roles for sphingosine kinase 1 and sphingosine 1 phoshate in the response to inflammatory stimuli in RAW macrophages. Prostaglandins Other Lipid Mediat 85(3–4):107–114

    Article  PubMed  CAS  Google Scholar 

  • Heffernan-Stroud LA, Helke KL et al (2012) Defining a role for sphingosine kinase 1 in p53-dependent tumors. Oncogene 31(9):1166–1175

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Singh S et al (1996) Acidic sphingomyelinase-generated ceramide is needed but not sufficient for TNF-induced apoptosis and nuclear factor-kappa B activation. J Immunol 157(1): 297–304

    PubMed  CAS  Google Scholar 

  • Hisano Y, Kobayashi N et al (2011) The sphingosine 1-phosphate transporter, SPNS2, functions as a transporter of the phosphorylated form of the immunomodulating agent FTY720. J Biol Chem 286(3):1758–1766

    Article  PubMed  CAS  Google Scholar 

  • Hisano Y, Kobayashi N et al (2012) Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. PLoS One 7(6):e38941

    Article  PubMed  CAS  Google Scholar 

  • Hla T (2001) Sphingosine 1-phosphate receptors. Prostaglandins Other Lipid Mediat 64(1–4): 135–142

    Article  PubMed  CAS  Google Scholar 

  • Hla T, Brinkmann V (2011) Sphingosine 1-phosphate (S1P): physiology and the effects of S1P receptor modulation. Neurology 76(8 Suppl 3):S3–S8

    Article  PubMed  CAS  Google Scholar 

  • Hla T, Maciag T (1990a) An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J Biol Chem 265(16):9308–9313

    PubMed  CAS  Google Scholar 

  • Hla T, Maciag T (1990b) Isolation of immediate-early differentiation mRNAs by enzymatic amplification of subtracted cDNA from human endothelial cells. Biochem Biophys Res Commun 167(2):637–643

    Article  PubMed  CAS  Google Scholar 

  • Hla T, Venkataraman K et al (2008) The vascular S1P gradient-cellular sources and biological significance. Biochim Biophys Acta 1781(9):477–482

    Article  PubMed  CAS  Google Scholar 

  • Hobson JP, Rosenfeldt HM et al (2001) Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science 291(5509):1800–1803

    Article  PubMed  CAS  Google Scholar 

  • Hsu A, Zhang W et al (2012) Sphingosine-1-phosphate receptor-3 signaling up-regulates epidermal growth factor receptor and enhances epidermal growth factor receptor-mediated carcinogenic activities in cultured lung adenocarcinoma cells. Int J Oncol 40(5):1619–1626

    PubMed  CAS  Google Scholar 

  • Igarashi N, Okada T et al (2003) Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem 278(47):46832–46839

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Ohkawa R et al (2010) Plasma concentration of bioactive lipid mediator sphingosine 1-phosphate is reduced in patients with chronic hepatitis C. Int J Clin Chim Acta 411(9–10):765–770

    CAS  Google Scholar 

  • Jenkins RW, Clarke CJ et al (2011) Regulation of CC ligand 5/RANTES by acid sphingomyelinase and acid ceramidase. J Biol Chem 286(15):13292–13303

    Article  PubMed  CAS  Google Scholar 

  • Johnson KR, Becker KP et al (2002) PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J Biol Chem 277(38):35257–35262

    Article  PubMed  CAS  Google Scholar 

  • Johnson KR, Johnson KY et al (2005) Immunohistochemical distribution of sphingosine kinase 1 in normal and tumor lung tissue. J Histochem Cytochem 53(9):1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Johnstone ED, Mackova M et al (2005) Multiple anti-apoptotic pathways stimulated by EGF in cytotrophoblasts. Placenta 26(7):548–555

    Article  PubMed  CAS  Google Scholar 

  • Kang JS, Yoon YD et al (2006) Glabridin suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells by blocking sphingosine kinase pathway: implications of Akt, extracellular signal-regulated kinase, and nuclear factor-kappaB/Rel signaling pathways. Mol Pharmacol 69(3):941–949

    PubMed  CAS  Google Scholar 

  • Katsuma S, Hada Y et al (2002) Signalling mechanisms in sphingosine 1-phosphate-promoted mesangial cell proliferation. Genes Cells 7(12):1217–1230

    Article  PubMed  CAS  Google Scholar 

  • Kawahara A, Nishi T et al (2009) The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323(5913):524–527

    Article  PubMed  CAS  Google Scholar 

  • Kawamori T, Osta W et al (2006) Sphingosine kinase 1 is up-regulated in colon carcinogenesis. FASEB J 20(2):386–388

    PubMed  CAS  Google Scholar 

  • Kawamori T, Kaneshiro T et al (2009) Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J 23(2):405–414

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Yamaguchi A et al (2009) Characterization of the ATP-dependent sphingosine 1-phosphate transporter in rat erythrocytes. J Biol Chem 284(32):21192–21200

    Article  PubMed  CAS  Google Scholar 

  • Kohama T, Olivera A et al (1998) Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem 273(37):23722–23728

    Article  PubMed  CAS  Google Scholar 

  • Kono Y, Nishiuma T et al (2007) Sphingosine kinase 1 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-beta1. Am J Respir Cell Mol Biol 37(4):395–404

    Article  PubMed  CAS  Google Scholar 

  • Krieg J, Hunter T (1992) Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J Biol Chem 267(27):19258–19265

    PubMed  CAS  Google Scholar 

  • Kusner DJ, Thompson CR et al (2007) The localization and activity of sphingosine kinase 1 are coordinately regulated with actin cytoskeletal dynamics in macrophages. J Biol Chem 282(32): 23147–23162

    Article  PubMed  CAS  Google Scholar 

  • Lacana E, Maceyka M et al (2002) Cloning and characterization of a protein kinase A anchoring protein (AKAP)-related protein that interacts with and regulates sphingosine kinase 1 activity. J Biol Chem 277(36):32947–32953

    Article  PubMed  CAS  Google Scholar 

  • Lamour NF, Chalfant CE (2005) Ceramide-1-phosphate: the "missing" link in eicosanoid biosynthesis and inflammation. Mol Interv 5(6):358–367

    Article  PubMed  CAS  Google Scholar 

  • Lanterman MM, Saba JD (1998) Characterization of sphingosine kinase (SK) activity in Saccharomyces cerevisiae and isolation of SK-deficient mutants. Biochem J 332(Pt 2):525–531

    PubMed  CAS  Google Scholar 

  • Leclercq TM, Moretti PA et al (2008) Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. J Biol Chem 283(15):9606–9614

    Article  PubMed  CAS  Google Scholar 

  • Leclercq TM, Moretti PA et al (2011) Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis. Oncogene 30(3):372–378

    Article  PubMed  CAS  Google Scholar 

  • Li QF, Wu CT et al (2007) Activation of sphingosine kinase mediates suppressive effect of interleukin-6 on human multiple myeloma cell apoptosis. Br J Haematol 138(5):632–639

    Article  PubMed  CAS  Google Scholar 

  • Lim KG, Sun C et al (2011a) (R)-FTY720 methyl ether is a specific sphingosine kinase 2 inhibitor: effect on sphingosine kinase 2 expression in HEK 293 cells and actin rearrangement and survival of MCF-7 breast cancer cells. Cell Signal 23(10):1590–1595

    Article  PubMed  CAS  Google Scholar 

  • Lim KG, Tonelli F et al (2011b) FTY720 analogues as sphingosine kinase 1 inhibitors: enzyme inhibition kinetics, allosterism, proteasomal degradation, and actin rearrangement in MCF-7 breast cancer cells. J Biol Chem 286(21):18633–18640

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Baby N et al (2011) Expression of sphingosine kinase 1 in amoeboid microglial cells in the corpus callosum of postnatal rats. J Neuroinflammation 8:13

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Toman RE et al (2003) Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem 278(41):40330–40336

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Guo XZ et al (2011) KAI1 inhibits HGF-induced invasion of pancreatic cancer by sphingosine kinase activity. Hepatobiliary Pancreat Dis Int 10(2):201–208

    Article  PubMed  CAS  Google Scholar 

  • Long JS, Edwards J et al (2010) Sphingosine kinase 1 induces tolerance to human epidermal growth factor receptor 2 and prevents formation of a migratory phenotype in response to sphingosine 1-phosphate in estrogen receptor-positive breast cancer cells. Mol Cell Biol 30(15):3827–3841

    Article  PubMed  CAS  Google Scholar 

  • Loveridge C, Tonelli F et al (2010) The sphingosine kinase 1 inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole induces proteasomal degradation of sphingosine kinase 1 in mammalian cells. J Biol Chem 285(50):38841–38852

    Article  PubMed  CAS  Google Scholar 

  • Maceyka M, Nava VE et al (2004) Aminoacylase 1 is a sphingosine kinase 1-interacting protein. FEBS Lett 568(1–3):30–34

    Article  PubMed  CAS  Google Scholar 

  • Maceyka M, Sankala H et al (2005) SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 280(44):37118–37129

    Article  PubMed  CAS  Google Scholar 

  • Maceyka M, Alvarez SE et al (2008) Filamin A links sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 at lamellipodia to orchestrate cell migration. Mol Cell Biol 28(18): 5687–5697

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon AC, Buckley A et al (2002) Sphingosine kinase: a point of convergence in the action of diverse neutrophil priming agents. J Immunol 169(11):6394–6400

    PubMed  CAS  Google Scholar 

  • Mao H, Lebrun DG et al (2012) Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Invest 30(1):48–56

    Article  PubMed  Google Scholar 

  • Martin JL, Lin MZ et al (2009) Potentiation of growth factor signaling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity. J Biol Chem 284(38):25542–25552

    Article  PubMed  CAS  Google Scholar 

  • Melendez AJ (2008) Sphingosine kinase signalling in immune cells: potential as novel therapeutic targets. Biochim Biophys Acta 1784(1):66–75

    Article  PubMed  CAS  Google Scholar 

  • Meng H, Yuan Y et al (2011) Loss of Sphingosine kinase 1/S1P signaling impairs cell growth and survival of neurons and progenitor cells in the developing sensory ganglia. PLoS One 6(11):e27150

    Article  PubMed  CAS  Google Scholar 

  • Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111(10):6387–6422

    Article  PubMed  CAS  Google Scholar 

  • Meyer zu Heringdorf D, Lass H et al (1999) Role of sphingosine kinase in Ca(2+) signalling by epidermal growth factor receptor. FEBS Lett 461(3):217–222

    Article  PubMed  CAS  Google Scholar 

  • Michaud J, Kohno M et al (2006) Normal acute and chronic inflammatory responses in sphingosine kinase 1 knockout mice. FEBS Lett 580(19):4607–4612

    Article  PubMed  CAS  Google Scholar 

  • Mizugishi K, Yamashita T et al (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25(24):11113–11121

    Article  PubMed  CAS  Google Scholar 

  • Mullen TD, Hannun YA et al (2012) Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J 441(3):789–802

    Article  PubMed  CAS  Google Scholar 

  • Muller G, Ayoub M et al (1995) PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J 14(9):1961–1969

    PubMed  CAS  Google Scholar 

  • Niedernberg A, Tunaru S et al (2003) Comparative analysis of functional assays for characterization of agonist ligands at G protein-coupled receptors. J Biomol Screen 8(5):500–510

    Article  PubMed  CAS  Google Scholar 

  • Niessen F, Schaffner F et al (2008) Dendritic cell PAR1–P3 signalling couples coagulation and inflammation. Nature 452(7187):654–658

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuis B, Luth A et al (2010) Dexamethasone protects human fibroblasts from apoptosis via an S1P3-receptor subtype dependent activation of PKB/Akt and Bcl XL. Pharm Res 61(5): 449–459

    Article  CAS  Google Scholar 

  • Nincheri P, Bernacchioni C et al (2010) Sphingosine kinase-1/S1P1 signalling axis negatively regulates mitogenic response elicited by PDGF in mouse myoblasts. Cell Signal 22(11): 1688–1699

    Article  PubMed  CAS  Google Scholar 

  • Nishiuma T, Nishimura Y et al (2008) Inhalation of sphingosine kinase inhibitor attenuates airway inflammation in asthmatic mouse model. Am J Physiol Lung Cell Mol Physiol 294(6):L1085–L1093

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Ding G et al (2005) Involvement of N-terminal-extended form of sphingosine kinase 2 in serum-dependent regulation of cell proliferation and apoptosis. J Biol Chem 280(43): 36318–36325

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Kajimoto T et al (2009) Sphingosine kinase/sphingosine 1-phosphate signalling in central nervous system. Cell Signal 21(1):7–13

    Article  PubMed  CAS  Google Scholar 

  • Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365(6446):557–560

    Article  PubMed  CAS  Google Scholar 

  • Olivera A, Rosenfeldt HM et al (2003) Sphingosine kinase type 1 induces G12/13-mediated stress fiber formation, yet promotes growth and survival independent of G protein-coupled receptors. J Biol Chem 278(47):46452–46460

    Article  PubMed  CAS  Google Scholar 

  • Olivera A, Urtz N et al (2006) IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J Biol Chem 281(5):2515–2525

    Article  PubMed  CAS  Google Scholar 

  • Paugh BS, Paugh SW et al (2008) EGF regulates plasminogen activator inhibitor-1 (PAI-1) by a pathway involving c-Src, PKCdelta, and sphingosine kinase 1 in glioblastoma cells. FASEB J 22(2):455–465

    Article  PubMed  CAS  Google Scholar 

  • Pchejetski D, Kunduzova O et al (2007) Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. Circ Res 100(1):41–49

    Article  PubMed  CAS  Google Scholar 

  • Pettus BJ, Bielawski J et al (2003) The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. FASEB J 17(11): 1411–1421

    Article  PubMed  CAS  Google Scholar 

  • Pitman MR, Barr RK et al (2011) A critical role for the protein phosphatase 2A B’alpha regulatory subunit in dephosphorylation of sphingosine kinase 1. Int J Biochem Cell Biol 43(3):342–347

    Article  PubMed  CAS  Google Scholar 

  • Pitson SM, D’Andrea RJ et al (2000) Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes. Biochem J 350(Pt 2):429–441

    Article  PubMed  CAS  Google Scholar 

  • Pitson SM, Moretti PA et al (2002) The nucleotide-binding site of human sphingosine kinase 1. J Biol Chem 277(51):49545–49553

    Article  PubMed  CAS  Google Scholar 

  • Pitson SM, Moretti PA et al (2003) Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 22(20):5491–5500

    Article  PubMed  CAS  Google Scholar 

  • Pyne S, Pyne N (2000) Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. Pharmacol Ther 88(2):115–131

    Article  PubMed  CAS  Google Scholar 

  • Pyne NJ, Pyne S (2010) Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10(7):489–503

    Article  PubMed  CAS  Google Scholar 

  • Pyne S, Pyne NJ (2011) Translational aspects of sphingosine 1-phosphate biology. Trends Mol Med 17(8):463–472

    Article  PubMed  CAS  Google Scholar 

  • Pyne S, Lee SC et al (2009) Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cell Signal 21(1): 14–21

    Article  PubMed  CAS  Google Scholar 

  • Radeff-Huang J, Seasholtz TM et al (2007) Tumor necrosis factor-alpha-stimulated cell proliferation is mediated through sphingosine kinase-dependent Akt activation and cyclin D expression. J Biol Chem 282(2):863–870

    Article  PubMed  CAS  Google Scholar 

  • Riccio A (2010) New endogenous regulators of class I histone deacetylases. Sci Signal 3(103):pe1

    Article  PubMed  CAS  Google Scholar 

  • Rius J (1997) A new probability distribution of the triplet from Patterson function arguments V. Acta Crystallogr D Biol Crystallogr 53(Pt 5):535–539

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeldt HM, Hobson JP et al (2001a) EDG-1 links the PDGF receptor to Src and focal adhesion kinase activation leading to lamellipodia formation and cell migration. FASEB J 15(14): 2649–2659

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeldt HM, Hobson JP et al (2001b) The sphingosine-1-phosphate receptor EDG-1 is essential for platelet-derived growth factor-induced cell motility. Biochem Soc Trans 29(Pt 6):836–839

    Article  PubMed  CAS  Google Scholar 

  • Salvado L, Serrano-Marco L et al (2012) Targeting PPARbeta/delta for the treatment of type 2 diabetes mellitus. Expert Opin Ther Targets 16(2):209–223

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Maceyka M et al (2005) Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Lett 579(24):5313–5317

    Article  PubMed  CAS  Google Scholar 

  • Sethu S, Mendez-Corao G et al (2008) Phospholipase D1 plays a key role in TNF-alpha signaling. J Immunol 180(9):6027–6034

    PubMed  CAS  Google Scholar 

  • Shi Y, Rehman H et al (2012) Sphingosine kinase-2 inhibition improves mitochondrial function and survival after hepatic ischemia-reperfusion. J Hepatol 56(1):137–145

    Article  PubMed  CAS  Google Scholar 

  • Shida D, Fang X et al (2008) Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res 68(16):6569–6577

    Article  PubMed  CAS  Google Scholar 

  • Shu X, Wu W et al (2002) Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 22(22): 7758–7768

    Article  PubMed  CAS  Google Scholar 

  • Silver RM (1996) Scleroderma. Clinical problems. The lungs. Rheum Dis Clin North Am 22(4): 825–840

    Article  PubMed  CAS  Google Scholar 

  • Singh AT, Dharmarajan A et al (2012) Sphingosine-sphingosine-1-phosphate pathway regulates trophoblast differentiation and syncytialization. Reprod Biomed Online 24(2):224–234

    Article  PubMed  CAS  Google Scholar 

  • Siow D, Wattenberg B (2011) The compartmentalization and translocation of the sphingosine kinases: mechanisms and functions in cell signaling and sphingolipid metabolism. Crit Rev Biochem Mol Biol 46(5):365–375

    Article  PubMed  CAS  Google Scholar 

  • Siow DL, Anderson CD et al (2011) Sphingosine kinase localization in the control of sphingolipid metabolism. Adv Enzyme Regul 51(1):229–244

    Article  PubMed  CAS  Google Scholar 

  • Soliven B, Ma L et al (2003) PDGF upregulates delayed rectifier via Src family kinases and sphingosine kinase in oligodendroglial progenitors. Am J Physiol Cell Physiol 284(1):C85–C93

    PubMed  CAS  Google Scholar 

  • Song JH, Kim M et al (2010) Isoflurane via TGF-beta1 release increases caveolae formation and organizes sphingosine kinase signaling in renal proximal tubules. Am J Physiol Renal Physiol 298(4):F1041–F1050

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4(5):397–407

    Article  PubMed  CAS  Google Scholar 

  • Stahelin RV, Hwang JH et al (2005) The mechanism of membrane targeting of human sphingosine kinase 1. J Biol Chem 280(52):43030–43038

    Article  PubMed  CAS  Google Scholar 

  • Stoffel W (1970) Studies on the biosynthesis and degradation of sphingosine bases. Chem Phys Lipids 5(1):139–158

    Article  PubMed  CAS  Google Scholar 

  • Strub GM, Paillard M et al (2011) Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J 25(2):600–612

    Article  PubMed  CAS  Google Scholar 

  • Sukocheva OA, Wang L et al (2003) Sphingosine kinase transmits estrogen signaling in human breast cancer cells. Mol Endocrinol 17(10):2002–2012

    Article  PubMed  CAS  Google Scholar 

  • Sukocheva O, Wadham C et al (2006) Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol 173(2):301–310

    Article  PubMed  CAS  Google Scholar 

  • Sutherland CM, Moretti PA et al (2006) The calmodulin-binding site of sphingosine kinase and its role in agonist-dependent translocation of sphingosine kinase 1 to the plasma membrane. J Biol Chem 281(17):11693–11701

    Article  PubMed  CAS  Google Scholar 

  • Taha TA, Osta W et al (2004) Down-regulation of sphingosine kinase-1 by DNA damage: dependence on proteases and p53. J Biol Chem 279(19):20546–20554

    Article  PubMed  CAS  Google Scholar 

  • Taha TA, Kitatani K et al (2005) Tumor necrosis factor induces the loss of sphingosine kinase-1 by a cathepsin B-dependent mechanism. J Biol Chem 280(17):17196–17202

    Article  PubMed  CAS  Google Scholar 

  • Taha TA, El-Alwani M et al (2006) Sphingosine kinase-1 is cleaved by cathepsin B in vitro: identification of the initial cleavage sites for the protease. FEBS Lett 580(26):6047–6054

    Article  PubMed  CAS  Google Scholar 

  • Uhlenbrock K, Gassenhuber H et al (2002) Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors. Cell Signal 14(11): 941–953

    Article  PubMed  CAS  Google Scholar 

  • Uhlenbrock K, Huber J et al (2003) Fluid shear stress differentially regulates gpr3, gpr6, and gpr12 expression in human umbilical vein endothelial cells. Cell Physiol Biochem 13(2):75–84

    Article  PubMed  CAS  Google Scholar 

  • van Koppen CJ, Meyer zu Heringdorf D et al (2001) Sphingosine kinase-mediated calcium signaling by muscarinic acetylcholine receptors. Life Sci 68(22–23):2535–2540

    Article  PubMed  Google Scholar 

  • Venkataraman K, Thangada S et al (2006) Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient. Biochem J 397(3):461–471

    Article  PubMed  CAS  Google Scholar 

  • Wadgaonkar R, Patel V et al (2009) Differential regulation of sphingosine kinases 1 and 2 in lung injury. Am J Physiol Lung Cell Mol Physiol 296(4):L603–L613

    Article  PubMed  CAS  Google Scholar 

  • Wang LS, Chow KC et al (2002) Effects of platelet activating factor, butyrate and interleukin-6 on cyclooxygenase-2 expression in human esophageal cancer cells. Scand J Gastroenterol 37(4): 467–475

    Article  PubMed  CAS  Google Scholar 

  • Xia P, Gamble JR et al (1998) Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. PNAS 95(24):14196–14201

    Article  PubMed  CAS  Google Scholar 

  • Xia P, Wang L et al (2002) Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling. J Biol Chem 277(10):7996–8003

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Olson DM et al (2010) Increased expression of enzymes for sphingosine 1-phosphate turnover and signaling in human decidua during late pregnancy. Biol Reprod 82(3):628–635

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka M, Shegogue D et al (2004) Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-beta and mediates TIMP-1 up-regulation. J Biol Chem 279(52):53994–54001

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Costanzo M et al (1993) Tumor necrosis factor activation of the sphingomyelin pathway signals nuclear factor kappa B translocation in intact HL-60 cells. J Biol Chem 268(27): 20520–20523

    PubMed  CAS  Google Scholar 

  • Yokota S, Taniguchi Y et al (2004) Asp177 in C4 domain of mouse sphingosine kinase 1a is important for the sphingosine recognition. FEBS Lett 578(1–2):106–110

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Shao Y et al (2012) Acetylation of sphingosine kinase 1 regulates cell growth and cell-cycle progression. Biochem Biophys Res Commun 417(4):1242–1247

    Article  PubMed  CAS  Google Scholar 

  • Zebol JR, Hewitt NM et al (2009) The CCT/TRiC chaperonin is required for maturation of sphingosine kinase 1. Int J Biochem Cell Biol 41(4):822–827

    Article  PubMed  CAS  Google Scholar 

  • Zhu HY, Da WM (2007) Regulation of immunity by sphingosine 1-phosphate and its G protein-coupled receptors–review. J Exp Hematol 5(6):1317–1324

    Google Scholar 

Download references

Funding

This manuscript is based upon work supported in part by a MERIT Award [BX000156-01A1] (LMO) by the Office of Research and Development, Department of Veterans Affairs, Northport VA Medical Center, Northport, NY. The content of this material does not represent the views of the Department of Veterans Affairs or the United States Government, US Department of Education Graduate Assistance in Areas of National Need (GAANN) in Lipid Biology and New Technologies [P200A070596] (KAOG), and National Cancer Institute [PO1-CA97132 (LMO)] and National Institutes of Health National Institute of General Medical Sciences [R01-GM062887 (LMO)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina M. Obeid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Gandy, K.A.O., Obeid, L.M. (2013). Regulation of the Sphingosine Kinase/Sphingosine 1-Phosphate Pathway. In: Gulbins, E., Petrache, I. (eds) Sphingolipids in Disease. Handbook of Experimental Pharmacology, vol 216. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1511-4_14

Download citation

Publish with us

Policies and ethics