Skip to main content

Diffuse Interface (D.I.) Model for Multiphase Flows

  • Chapter
Multiphase Microfluidics: The Diffuse Interface Model

Part of the book series: CISM Courses and Lectures ((CISM,volume 538))

  • 1812 Accesses

Abstract

We review the diffuse interface model for fluid flows, where all quantities, such as density and composition, are assumed to vary continuously in space. This approach is the natural extension of van der Waals’ theory of critical phenomena both for one-component, two-phase fluids and for liquid binary mixtures. The equations of motion are derived, showing that the problem is well posed, as the rate of change of the total energy equals the energy dissipation. In particular, we see that a non-equilibrium, reversible body force appears in the Navier-Stokes equation, that is proportional to the gradient of the generalized chemical potential. This, so called Korteweg, force is responsible for the convective motion observed in otherwise quiescent systems during phase change. Finally, the results of several numerical simulations are described, modeling, in particular, a) mixing, b) spinodal decomposition; c) nucleation; d) heat transfer; e) liquid-vapor phase separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • D.M. Anderson, G.B. McFadden, and A.A. Wheeler. Diffuse-interface methods in fluid mechanics. Annual Review of Fluid Mechanics, 30:139–165, 1998.

    Article  MathSciNet  Google Scholar 

  • L.K. Antanovskii. A phase field model of capillarity. Physics of Fluids, 7: 747–753, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  • L.K. Antanovskii. Microscale theory of surface tension. Physical Review E, 54:6285–6290, 1996.

    Article  Google Scholar 

  • D. Beysens, Y. Garrabos, V. S. Nikolayev, C. Lecoutre-Chabot, J.-P. Delville, and J. Hegseth. Liquid-vapor phase separation in a thermocapillary force field. Europhysics Letters, 59(2):245–251, 2002.

    Article  Google Scholar 

  • R. Borcia and M. Bestehorn. Phase-field simulations for drops and bubbles. Physical Review E, 75:056309, 2007.

    Article  Google Scholar 

  • J.W. Cahn. On spinodal decomposition. Acta Metallurgica, 9:795–801, 1961.

    Article  Google Scholar 

  • J.W. Cahn. Critical point wetting. Journal of Chemical Physics, 66(8): 3667–3772, 1977.

    Article  Google Scholar 

  • J.W. Cahn and J.E. Hilliard. Free energy of a nonuniform system. I. Interfacial free energy. Journal of Chemical Physics, 28:258–267, 1958.

    Article  Google Scholar 

  • J.W. Cahn and J.E. Hilliard. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. Journal of Chemical Physics, 31:688–699, 1959.

    Article  Google Scholar 

  • F. Califano and R. Mauri. Drop size evolution during the phase separation of liquid mixtures. Industrial & Engineering Chemistry Research, 43: 349–353, 2004.

    Article  Google Scholar 

  • E.L. Cussler. Diffusion. Cambridge University Press, 1982.

    Google Scholar 

  • H.T. Davis and L.E. Scriven. Stress and structure in fluid interfaces. Advances in Chemical Physics, 49:357–454, 1982.

    Article  Google Scholar 

  • P.G. de Gennes. Dynamics of fluctuations and spinodal decomposition in polymer blends. Journal of Chemical Physics, 72:4756–4763, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  • S.R. de Groot and P. Mazur. Non-Equilibrium Thermodynamics. Dover, New York, 1984.

    Google Scholar 

  • B. U. Felderhof. Dynamics of the diffuse gas-liquid interface near the critical point. Physica, 48:541–560, 1970.

    Article  Google Scholar 

  • H. Furukawa. Role of inertia in the late stage of the phase separation of a fluid. Physica A, 204:237–245, 1994.

    Article  Google Scholar 

  • J.W. Gibbs. On the equilibrium of heterogeneous substances. Transactions of the Connecticut Academy of Arts and Sciences, 1876.

    Google Scholar 

  • J.D. Gunton. Homogeneous nucleation. Journal of Statistical Physics, 95: 903–923, 1999.

    Article  MATH  Google Scholar 

  • R. Gupta, R. Mauri, and R. Shinnar. Liquid-liquid extraction using the composition induced phase separation process. Industrial & Engineering Chemistry Research, 35:2360–2368, 1996.

    Article  Google Scholar 

  • R. Gupta, R. Mauri, and R. Shinnar. Phase separation of liquid mixtures in the presence of surfactants. Industrial & Engineering Chemistry Research, 38:2418–2424, 1999.

    Article  Google Scholar 

  • P. C. Hohenberg and B. I. Halperin. Theory of dynamic critical phenomena. Reviews of Modern Physics, 49:435–479, 1977.

    Article  Google Scholar 

  • J.H. Israelachvili. Intermolecular and Surface Forces. Academic Press, 1992.

    Google Scholar 

  • D. Jacqmin. Contact-line dynamics of a diffuse fluid interface. Journal of Fluid Mechanics, 402:57, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Jasnow and J. Viñals. Coarse-grained description of thermo-capillary flow. Physics of Fluids, 8:660–669, 1996.

    Article  MATH  Google Scholar 

  • K. Kawasaki. Kinetic equations and time correlation functions of critical fluctuations. Annals of Physics, 61:1–56, 1970.

    Article  Google Scholar 

  • D.J. Korteweg. Sur la forme que prennent les Ă©quations du mouvements des fluides si l’on tient compte des forces capillaires causĂ©es par des variations de densitĂ© considĂ©rables mais continues et sur la thĂ©orie de la capillaritĂ© dans l’hypothèse dĂşne variation continue de la densitĂ©. Archives NĂ©erlandaises des Sciences Exactes et Naturelles. Series II, 6: 1–24, 1901.

    MATH  Google Scholar 

  • A.G. Lamorgese and R. Mauri. Phase separation of liquid mixtures. In G. Continillo, S. Crescitelli, and M. Giona, editors, Nonlinear Dynamics and Control in Process Engineering: Recent Advances, pages 139–152. Springer, 2002.

    Google Scholar 

  • A.G. Lamorgese and R. Mauri. Nucleation and spinodal decomposition of liquid mixtures. Physics of Fluids, 17:034–107, 2005.

    Google Scholar 

  • A.G. Lamorgese and R. Mauri. Mixing of macroscopically quiescent liquid mixtures. Physics of Fluids, 18:044107, 2006.

    Article  Google Scholar 

  • A.G. Lamorgese and R. Mauri. Diffuse-interface modeling of phase segregation in liquid mixtures. International Journal of Multiphase Flow, 34: 987–995, 2008.

    Article  Google Scholar 

  • A.G. Lamorgese and R. Mauri. Diffuse-interface modeling of liquid-vapor phase separation in a van der Waals fluid. Physics of Fluids, 21:044107, 2009.

    Article  Google Scholar 

  • L.D. Landau and E.M. Lifshitz. Statistical Physics, Part I. Pergamon Press, 1980.

    Google Scholar 

  • M. Le Bellac. Quantum and Statistical Field Theory. Clarendon Press, 1991.

    Google Scholar 

  • S. K. Lele. Compact finite-difference schemes with spectral-like resolution. Journal of Computational Physics, 103:16–42, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Lowengrub and L. Truskinovsky. Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proceedings of the Royal Society of London, Series A, 454:2617–2654, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  • T.C. Lucretius. De Rerum Natura, Book I. 50 B.C.E. “Corpus inani distinctum, quoniam nec plenum naviter extat nec porro vacuum.” This is equivalent to one of the most basic principles of taoism, stating that nothing can be completely yin nor completely yang.

    Google Scholar 

  • S. Madruga and U. Thiele. Decomposition driven interface evolution for layers of binary mixtures: II. Influence of convective transport on linear stability. Physics of Fluids, 21:062104, 2009.

    Article  Google Scholar 

  • R. Mauri, R. Shinnar, and G. Triantafyllou. Spinodal decomposition in binary mixtures. Physical Review E, 53:2613–2623, 1996.

    Article  Google Scholar 

  • D. Molin and R. Mauri. Enhanced heat transport during phase separation of liquid binary mixtures. Physics of Fluids, 19:074102, 2007.

    Article  Google Scholar 

  • D. Molin, R. Mauri, and V. Tricoli. Experimental evidence of the motion of a single out-of-equilibrium drop. Langmuir, 23:7459–7461, 2007.

    Article  Google Scholar 

  • S. Nagarajan, S. K. Lele, and J. H. Ferziger. A robust high-order compact method for large-eddy simulation. Journal of Computational Physics, 191:392–419, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Nagarajan, S. K. Lele, and J. H. Ferziger. Leading-edge effects in bypass transition. Journal of Fluid Mechanics, 572:471–504, 2007.

    Article  MATH  Google Scholar 

  • E.B. Nauman and D.Q. He. Nonlinear diffusion and phase separation. Chemical Engineering Science, 56:1999–2018, 2001.

    Article  Google Scholar 

  • A. Onuki. Dynamic van der Waals theory. Physical Review E, 75:036304, 2007.

    Article  MathSciNet  Google Scholar 

  • A. Oprisan, S. A. Oprisan, J. Hegseth, Y. Garrabos, C. Lecoutre-Chabot, and D. Beysens. Universality in early-stage growth of phase-separating domains near the critical point. Physical Review E, 77(5):051118, 2008.

    Article  Google Scholar 

  • L.M. Pismen. Nonlocal diffuse interface theory of thin films and moving contact line. Physical Review E, 64:021603, 2001.

    Article  Google Scholar 

  • L.M. Pismen and Y. Pomeau. Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics. Physical Review E, 62:2480–2492, 2000.

    Article  MathSciNet  Google Scholar 

  • P. Poesio, G. Cominardi, A.M. Lezzi, R. Mauri, and G.P. Beretta. Effects of quenching rate and viscosity on spinodal decomposition. Physical Review E, 74:011507, 2006.

    Article  Google Scholar 

  • P. Poesio, A.M. Lezzi, and G.P. Beretta. Evidence of convective heat transfer enhancement induced by spinodal decomposition. Physical Review E, 75:066306, 2007.

    Article  Google Scholar 

  • P. Poesio, G.P. Beretta, and T. Thorsen. Dissolution of a liquid microdroplet in a nonideal liquid-liquid mixture far from thermodynamic equilibrium. Physical Review Letters, 103:064501, 2009.

    Article  Google Scholar 

  • S.D. Poisson. Nouvelle Theorie de l’Action Capillaire. Bachelier, 1831.

    Google Scholar 

  • Lord Rayleigh. On the theory of surface forces. II. Compressible fluids. Philosophical Magazine, 33:209–220, 1892.

    Article  MATH  Google Scholar 

  • J.S. Rowlinson and B. Widom. Molecular Theory of Capillarity. Oxford University Press, 1982.

    Google Scholar 

  • I. S. Sandler. Chemical and Engineering Thermodynamics, 3rd Ed. Wiley, 1999. Ch. 7.

    Google Scholar 

  • G. M. Santonicola, R. Mauri, and R. Shinnar. Phase separation of initially non-homogeneous liquid mixtures. Industrial & Engineering Chemistry Research, 40:2004–2010, 2001.

    Article  Google Scholar 

  • E. Siggia. Late stages of spinodal decomposition in binary mixtures. Physical Review A, 20:595–605, 1979.

    Article  Google Scholar 

  • H. Tanaka. Coarsening mechanisms of droplet spinodal decomposition in binary fluid mixtures. Journal of Chemical Physics, 105:10099–10114, 1996.

    Article  Google Scholar 

  • H. Tanaka and T. Araki. Spontaneous double phase separation induced by rapid hydrodynamic coarsening in two-dimensional fluid mixtures. Physical Review Letters, 81:389–392, 1998.

    Article  Google Scholar 

  • U. Thiele, S. Madruga, and L. Frastia. Decomposition driven interface evolution for layers of binary mixtures: I. Model derivation and stratified base states. Physics of Fluids, 19:122106, 2007.

    Article  Google Scholar 

  • J.D. van der Waals. The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, 1893. Reprinted in Journal of Statistical Physics, 20:200–244 (1979).

    Article  Google Scholar 

  • N. Vladimirova and R. Mauri. Mixing of viscous liquid mixtures. Chemical Engineering Science, 59:2065–2069, 2004.

    Article  Google Scholar 

  • N. Vladimirova, A. Malagoli, and R. Mauri. Diffusion-driven phase separation of deeply quenched mixtures. Physical Review E, 58:7691–7699, 1998.

    Article  Google Scholar 

  • N. Vladimirova, A. Malagoli, and R. Mauri. Diffusio-phoresis of twodimensional liquid droplets in a phase separating system. Physical Review E, 60:2037–2044, 1999a.

    Article  Google Scholar 

  • N. Vladimirova, A. Malagoli, and R. Mauri. Two-dimensional model of phase segregation in liquid binary mixtures. Physical Review E, 60:6968–6977, 1999b.

    Article  Google Scholar 

  • N. Vladimirova, A. Malagoli, and R. Mauri. Two-dimensional model of phase segregation in liquid binary mixtures with an initial concentration gradient. Chemical Engineering Science, 55:6109–6118, 2000.

    Article  Google Scholar 

  • G.W.F. von Leibnitz. Nouveaux Essais sur l’Entendement Humain, Book II, Ch. IV. 1765. Here Leibnitz applied to the natural world the statement “Natura non facit saltus” that in 1751 Linnaeus (i.e. Carl von LinnĂ©) in Philosophia Botanica, Ch. 77, had referred to species evolution. B. Widom. Theory of phase equilibrium. Journal of Physical Chemistry, 100:13190–13199, 1996.

    Article  Google Scholar 

  • R. Yamamoto and K. Nakanishi. Computer simulation of vapor-liquid phase separation. Molecular Simulation, 16:119–126, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 CISM, Udine

About this chapter

Cite this chapter

Lamorgese, A.G., Molin, D., Mauri, R. (2012). Diffuse Interface (D.I.) Model for Multiphase Flows. In: Mauri, R. (eds) Multiphase Microfluidics: The Diffuse Interface Model. CISM Courses and Lectures, vol 538. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1227-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1227-4_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1226-7

  • Online ISBN: 978-3-7091-1227-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics