Skip to main content

Role of Bilirubin Oxidation Products in the Pathophysiology of DIND Following SAH

  • Chapter
  • First Online:
Cerebral Vasospasm: Neurovascular Events After Subarachnoid Hemorrhage

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 115))

Abstract

Despite intensive research efforts, by our own team and many others, the molecules responsible for acute neurological damage following subarachnoid hemorrhage (SAH) and contributing to delayed ischemic neurological deficit (DIND) have not yet been elucidated. While there are a number of candidate mechanisms, including nitric oxide (NO) scavenging, endothelin-1, protein kinase C (PKC) activation, and rho kinase activation, to name but a few, that have been investigated using animal models and human trials, we are, it seems, no closer to discovering the true nature of this complex and enigmatic pathology. Efforts in our laboratory have focused on the chemical milieu present in hemorrhagic cerebrospinal fluid (CSF) following SAH and the interaction of the environment with the molecules generated by SAH and subsequent events, including NO scavenging, immune response, and clot breakdown. We have identified and characterized a group of molecules formed by the oxidative degradation of bilirubin (a clot breakdown product) and known as BOXes (bilirubin oxidation products). We present a synopsis of the characterization of BOXes as found in human SAH patients’ CSF and the multiple signaling pathways by which BOXes act. In summary, BOXes are likely to play an essential role in the etiology of acute brain injury following SAH, as well as DIND.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayberg MR, Batjer HH, Dacey R, Diringer M, Haley EC, Heros RC, Sternau LL, Torner J, Adams HP Jr, Feinberg W et al (1994) Guidelines for the management of aneurysmal subarachnoid hemorrhage. A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 25:2315–2328

    Article  PubMed  CAS  Google Scholar 

  2. Weir B (1995) The pathophysiology of cerebral vasospasm. Br J Neurosurg 9:375–390

    Article  PubMed  CAS  Google Scholar 

  3. Macdonald RL (2001) Pathophysiology and molecular genetics of vasospasm. Acta Neurochir Suppl 77:7–11

    PubMed  CAS  Google Scholar 

  4. Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, Kasuya H, Wellman G, Keller E, Zauner A, Dorsch N, Clark J, Ono S, Kiris T, Leroux P, Zhang JH (2009) Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res 31:151–158

    Article  PubMed  CAS  Google Scholar 

  5. Weir B, Grace M, Hansen J, Rothberg C (1978) Time course of vasospasm in man. J Neurosurg 48:173–178

    Article  PubMed  CAS  Google Scholar 

  6. Clark JF, Pyne-Geithman GJ (2005) Vascular smooth muscle function: the physiology and pathology of vasoconstriction. Pathophysiology 12:35–45

    Article  PubMed  CAS  Google Scholar 

  7. Dreier JP, Ebert N, Priller J, Megow D, Lindauer U, Klee R, Reuter U, Imai Y, Einhaupl KM, Victorov I, Dirnagl U (2000) Products of hemolysis in the subarachnoid space inducing spreading ischemia in the cortex and focal necrosis in rats: a model for delayed ischemic neurological deficits after subarachnoid hemorrhage? J Neurosurg 93:658–666

    Article  PubMed  CAS  Google Scholar 

  8. Pyne-Geithman G, Nair S, Caudell D, Clark J (2008) PKC and Rho in vascular smooth muscle: activation by BOXes and SAH CSF. Front Biosci 13:1526–1534

    Article  PubMed  CAS  Google Scholar 

  9. Nair S, Clark JF, Pyne-Geithman GJ (2007) Patterns of protein kinase C and Rho activation during cerebral vasospasm after subarachnoid hemorrhage. Arterioscler Thromb Vasc Biol 27:e43

    Google Scholar 

  10. Lyons MA, Shukla R, Zhang K, Pyne GJ, Sing M, Biehle SJ, Clark JF (2004) Increase of metabolic activity and disruption of normal contractile protein distribution by bilirubin oxidation products in vascular smooth-muscle cells. J Neurosurg 100:505–511

    Article  PubMed  CAS  Google Scholar 

  11. Pyne-Geithman GJ, Morgan CJ, Wagner KR, Dulaney EM, Carrozzella JA, Kanter DS, Zuccarello M, Clark JF (2005) Bilirubin production and oxidation in CSF of patients with cerebral vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 26:1070–1077

    Article  Google Scholar 

  12. Petzold GC, Einhaupl KM, Dirnagl U, Dreier JP (2003) Ischemia triggered by spreading neuronal activation is induced by endothelin-1 and hemoglobin in the subarachnoid space. Ann Neurol 54:591–598

    Article  PubMed  CAS  Google Scholar 

  13. Zuccarello M, Romano A, Passalacqua M, Rapoport RM (1995) Decreased endothelium-dependent relaxation in subarachnoid hemorrhage-induced vasospasm: role of ET-1. Am J Physiol 269:H1009–H1015

    PubMed  CAS  Google Scholar 

  14. Buckell M (1964) Demonstration of substances capable of contracting smooth muscle in haematoma fluid from certain cases of ruptured cerebral aneurysm. J Neurol Neurosurg Psychiatry 27:198–199

    Article  PubMed  CAS  Google Scholar 

  15. Wickman G, Lan C, Vollrath B (2003) Functional roles of the rho/ rho kinase pathway and protein kinase C in the regulation of cerebrovascular constriction. Circ Res 92:809–816

    Article  PubMed  CAS  Google Scholar 

  16. Miao FJ, Lee TJ (1989) Effects of bilirubin on cerebral arterial tone in vitro. J Cereb Blood Flow Metab 9:666–674

    Article  PubMed  CAS  Google Scholar 

  17. Kranc KR, Pyne GJ, Tao L, Claridge TDW, Harris DA, Cadoux-Hudson TAD, Turnbull JJ, Schofield CJ, Clark JF (2000) Oxidative degradation of bilirubin produces vasoactive compounds. Eur J Biochem 267:7094–7101

    Article  PubMed  CAS  Google Scholar 

  18. Clark JF, Reilly M, Sharp FR (2002) Oxidation of bilirubin produces compounds that cause prolonged vasospasm of rat cerebral vessels: a contributor to subarachnoid hemorrhage induced cerebral vasospasm. J Cereb Blood Flow Metab 22:472–478

    Article  PubMed  CAS  Google Scholar 

  19. Morgan CJ, Pyne-Geithman GJ, Jauch EC, Shukla R, Wagner KR, Clark JF, Zuccarello M (2004) Bilirubin as a cerebrospinal fluid marker of sentinel subarachnoid hemorrhage: a preliminary report in pigs. J Neurosurg 101:1026–1029

    Article  PubMed  CAS  Google Scholar 

  20. Seifert V, Stolke D, Kaever V, Dietz H (1987) Arachidonic acid metabolism following aneurysm rupture. Surg Neurol 27:243–252

    Article  PubMed  CAS  Google Scholar 

  21. Watanabe T, Asano T, Shimizu T, Seyama Y, Takakura K (1988) Participation of lipooxygenase products from arachidonic acid in the pathogenesis of cerebral vasospasm. J Neurochem 50:1145–1150

    Article  PubMed  CAS  Google Scholar 

  22. Ohta S, Nishihara J, Oka Y, Todo H, Kumon Y, Sakaki S (1995) Possible mechanism to induce protein kinase C-dependent arterial smooth muscle contraction after subarachnoid haemorrhage. Acta Neurochir (Wien) 137:217–225

    Article  CAS  Google Scholar 

  23. Zimpfer U, Hofmann C, Dichmann S, Schopf E, Norgauer J (1998) Synthesis, biological effects and pathophysiological implications of the novel arachidonic acid metabolite 5-oxo-eicosatetranoic acid (Review). Int J Mol Med 2:149–153

    PubMed  CAS  Google Scholar 

  24. Pyne GJ, Cadoux-Hudson TAD, Clark JF (2003) Platelets play an essential role in the aetiology of cerebral vasospasm after subarachnoid haemorrhage. Med Hypotheses 60:525–530

    Article  PubMed  Google Scholar 

  25. Vieweg U, Schramm J, Urbach H (1999) Platelet derived growth factor (PGDF-AB)-like immune reactivity in serum and in cerebral spinal fluid following experimental subarachnoid haemorrhage in dogs. Acta Neurochir 141:861–866

    Article  CAS  Google Scholar 

  26. Turner CP, Bergeron M, Matz P, Zegna A, Noble LJ, Panter SS, Sharp FR (1998) Heme oxygenase-1 (HO-1) is induced in glia throughout the brain by subarachnoid hemoglobin. J Cereb Blood Flow Metab 18:257–273

    Article  PubMed  CAS  Google Scholar 

  27. Tenhunen R, Ross ME, Marver HS, Schmid R (1970) Reduced nicotinamide-adenine dinucleotide phosphatse dependent biliverdin reductase: partial purification and characterization. Biochemistry 9:298–303

    Article  PubMed  CAS  Google Scholar 

  28. Wurster W, Pyne-Geithman GJ, Peat I, Clark JF (2007) Bilirubin oxidation products (BOXEs): synthesis, stability and chemical characteristics. Acta Neurochir Suppl 104:43–50

    Article  Google Scholar 

  29. Loftspring M, Wurster WL, Pyne-Geithman GJ, Clark JF (2006) Molecular oxygen is required for oxidation of bilirubin in vitro. Society for Neuroscience (SfN). J. Neurosci, Atlanta

    Google Scholar 

  30. Wurster WL, Loftspring M, Pyne-Geithman GJ, Clark JF (2008) Bilirubin oxidation products (BOXes) are produced by biochemical oxidation involving free peroxynitrite. FASEB J 22:758.16

    Google Scholar 

  31. Wurster WL, Loftspring M, Pyne-Geithman GJ, Peat IR, Clark JF (2007) Bilirubin oxidation products (BOXes) are produced by biochemical oxidation involving free hemoglobin. Society for Neuroscience (SfN). J. Neurosci, San Diego

    Google Scholar 

  32. Wurster WL, Loftspring M, Pyne-Geithman GJ, Peat IR, Clark JF (2008) Bilirubin oxidation products (BOXes) are produced by biochemical oxidation involving xanthine oxidase. Society for Neuroscience (SfN). J. Neurosci, Washington, DC

    Google Scholar 

  33. Loftspring M, Wurster W, Pyne-Geithman GJ, Clark JF (2007) An in vitro model of aneurysmal subarachnoid hemorrhage: oxidation of unconjugated bilirubin by cytochrome oxidase. J Neurochem 102:1990–1995

    Article  PubMed  CAS  Google Scholar 

  34. Oshiro EM, Hoffman PA, Dietsch GN, Watts MC, Pardoll DM, Tamargo RJ (1997) Inhibition of experimental vasospasm with anti-intercellular adhesion molecule-1 monoclonal antibody in rats. Stroke 28:2031–2037

    Article  PubMed  CAS  Google Scholar 

  35. Pyne-Geithman G, Caudell D, Prakash P, Clark J (2009) Glutathione peroxidase and subarachnoid hemorrhage: implications for the role of oxidative stress in cerebral vasospasm. Neurol Res 31:195–199

    Article  PubMed  CAS  Google Scholar 

  36. Katayama T, Watanabe M, Tanaka H, Hino M, Miyakawa T, Ohki T, Ye L-H, Xie C, Yoshiyama S, Nakamura A, Ishikawa R, Tanokura M, Oiwa K, Kohama K (2010) Stimulatory effects of arachidonic acid on myosin ATPase activity and contraction of smooth muscle via myosin motor domain. Am J Physiol 298:H505–H514

    CAS  Google Scholar 

  37. Ratz PH, Miner AS, Barbour SE (2009) Calcium-independent phospholipase A2 participates in KCl-induced calcium sensitization of vascular smooth muscle. Cell Calcium 46:65–72

    Article  PubMed  CAS  Google Scholar 

  38. Hou S, Xu R, Clark JF, Wurster WL, Heinemann SH, Hoshi T (2011) Bilirubin oxidation end products directly alter K+ channels important in the regulation of vascular tone. J Cereb Blood Flow Metab 31:102–112

    Article  PubMed  CAS  Google Scholar 

  39. Faraci FM (1990) Role of nitric oxide in regulation of basilar artery tone in vivo. Am J Physiol 28:H1216–H1221

    Google Scholar 

  40. Harrison DG, WIdder J, Grumbach IM, Chen W, Weber M, Searles C (2006) Endothelial mechanotransduction, nitric oxide and vascular inflammation. J Intern Med 259:351–363

    Article  PubMed  CAS  Google Scholar 

  41. Pluta RM, Thompson BG, Dawson TM, Snyder SH, Boock RJ, Oldfield EH (1996) Loss of nitric oxide synthase immunoreactivity in cerebral vasospasm. J Neurosurg 84:648–654

    Article  PubMed  CAS  Google Scholar 

  42. Pluta RM, Thompson BG, Afshar JK, Boock RJ, Iuliano B, Oldfield EH (2001) Nitric oxide and vasospasm. Acta Neurochir Suppl 77:67–72

    PubMed  CAS  Google Scholar 

  43. Gladwin MT, Lancaster MR Jr, Freeman BA, Schecter AN (2003) Nitric oxide reactions with hemoglobin: a view through the SNO-storm. Nat Med 9:496–500

    Article  PubMed  CAS  Google Scholar 

  44. Edwards DH, Byrne JV, Griffith TM (1992) The effect of chronic subarachnoid hemorrhage on basal endothelium-derived relaxing factor activity in intrathecal cerebral arteries. J Neurosurg 76:830–837

    Article  PubMed  CAS  Google Scholar 

  45. Sehba FA, Bederson JB (2006) Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res 28:381–398

    Article  PubMed  CAS  Google Scholar 

  46. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  47. Dostmann W, Tegge W, Frank R, Nickl C, Taylor M, Brayden J (2002) Exploring the mechanisms of vascular smooth muscle tone with highly specific, membrane-permeable inhibitors of cyclic GMP-dependent protein kinase I alpha. Pharmacol Ther 93:203

    Article  PubMed  CAS  Google Scholar 

  48. Tuteja N, Chandra M, Tuteja R, Misra MK (2004) Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J Biomed Biotechnol 2004:227–237

    Article  PubMed  Google Scholar 

  49. Kitazawa T, Semba S, Huh YH, Kitazawa K, Eto M (2009) Nitric oxide-induced biphasic mechanism of vascular relaxation via dephosphorylation of CPI-17 and MYPT1. J Physiol 587:3587–3603

    Article  PubMed  CAS  Google Scholar 

  50. Laher I, Bevan JA (1987) Protein kinase C activation selectively augments a stretch induced, calcium dependent tone in vascular smooth muscle. J Pharmacol Exp Ther 242:566–572

    PubMed  CAS  Google Scholar 

  51. Erdodi F, Rokolya A, Barany M, Barany K (1988) Phosphorylation of the 20,000-Da myosin light chain isoforms of arterial smooth muscle by myosin light chain kinase and protein kinase C. J Biochem Biophys 306:583–591

    Google Scholar 

  52. Haller H, Smallwood JI (1990) Protein kinase C translocation in intact vascular smooth muscle strips. Biochem J 270:375–381

    PubMed  CAS  Google Scholar 

  53. Ruegg JC (2000) Smooth muscle; PKC-induced Ca2+ senstization by myosin phosphatase inhibition. J Physiol 520:3

    Article  Google Scholar 

  54. Nishizawa S, Yamamoto S, Uemura K (1996) Interrelation between protein kinase C and nitric oxide in the development of vasospasm after subarachnoid hemorrhage. Neurol Res 18:89–95

    PubMed  CAS  Google Scholar 

  55. Nishizawa S, Obara K, Nakayama K, Koide M, Yokoyama T, Yokota N, Ohta S (2000) Protein kinase Cδ and α are involved in the development of vasospasm after subarachnoid hemorrhage. Eur J Pharmacol 398:113–119

    Article  PubMed  CAS  Google Scholar 

  56. Barany M, Barany K (1996) Protein phosphorylation during contraction and relaxation. In: Barany M (ed) Biochemistry of smooth muscle contraction, vol 1. Academic, San Diego, pp 321–339

    Chapter  Google Scholar 

  57. Sellers JR (1999) Unphosphorylated crossbridges and latch: smooth muscle regulation revisited. J Muscle Res Cell Motil 20:347–349

    Article  PubMed  CAS  Google Scholar 

  58. Murphy RA, Rembold CM, Hai C-M (1990) Contraction in smooth muscle. What is latch? Front Smooth Musc Res 327:39–50

    CAS  Google Scholar 

  59. Varsos V, Liszczak TM, Hee Lan D, Kistler JP, Vielma J, McL Black P, Heros RC, Zervas NT (1983) Delayed cerebral vasospasm is not reversible by aminophylline, nifedipine or papaverine in a “two-hemorrhage” canine model. J Neurosurg 58:11–17

    Article  PubMed  CAS  Google Scholar 

  60. Pyne GJ, Cadoux-Hudson TAD, Clark JF (1998) Force-function relations in vascular smooth muscle during cerebral vasospasm. Biophys J 74:A256

    Article  Google Scholar 

  61. Bolz S-SM, Vogel L, Sollinger D, Derwand RM, de Wit CM, Loirand GP, Pohl UMP (2003) Nitric oxide-induced decrease in calcium sensitivity of resistance arteries is attributed to activation of the myosin light chain phosphatase and antagonized by the rhoa/rho kinase pathway. Circulation 107:3081–3087

    Article  PubMed  CAS  Google Scholar 

  62. Pyne G, Cadoux-Hudson T, Clark J (2000) The presence of an extractable substance in the CSF of humans with cerebral vasospasm after subarachnoid haemorrhage that correlates with phosphatase inhibition. Biochim Biophys Acta 1474:283–290

    Article  PubMed  CAS  Google Scholar 

  63. Butler TM, Narayan SR, Mooers SU, Siegman MJ (1994) Rapid turnover of myosin light chain phosphate during cross bridge cycling. Am J Physiol 267:C1160–C1166

    PubMed  CAS  Google Scholar 

  64. Butler WE, Peterson JW, Zervas NT, Morgan KG (1996) Intracellular calcium, myosin light chain phosphorylation and contractile force in experimental cerebral vasospasm. Neurosurgery 38:781–788

    Article  Google Scholar 

  65. Sato M, Tani E, Fujikawa H, Kaibuchi K (2000) Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm [see comments]. Circ Res 87:195–200

    Article  PubMed  CAS  Google Scholar 

  66. Feng J, Ito M, Ichikawa K, Isaki N, Nishikawa M, Hartshorne DJ, Nakano T (1999) Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J Biol Chem 274:37385–37390

    Article  PubMed  CAS  Google Scholar 

  67. Koyama M, Ito M, Feng J, Seko T, Shiraki K, Takase K, Hartshorne DJ, Nakano T (2000) Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett 475:197–200

    Article  PubMed  CAS  Google Scholar 

  68. Nobe K, Paul RJ (2001) Distinct pathways of Ca2+ sensitization in porcine coronary artery. Effects of Rho-related kinase and protein kinase C inhibition on force and intracellular Ca2+. Circ Res 88:1283–1290

    Article  PubMed  CAS  Google Scholar 

  69. Somlyo AP, Somlyo AV (2000) Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol 522:177–185

    Article  PubMed  CAS  Google Scholar 

  70. Pyne-Geithman GJ, Nair SG, Clark JF (2009) Rho-mediated stress fiber formation in smooth muscle esposed to bilirubin oxidation products: a mechanism for cerebral vasospasm. In: Tenth international conference on cerebral vasospasm, Thieme Chongqing, 2009

    Google Scholar 

  71. Brandt D, Gimona M, Hillman M, Haller H, Mischak H (2002) Protein kinase C induced actin reorganization via a Src- and Rho-dependent pathway. J Biol Chem 277:20903–20910

    Article  PubMed  CAS  Google Scholar 

  72. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulated the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of Interest Statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail J. Pyne-Geithman D.Phil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Pyne-Geithman, G.J., Nair, S.G., Stamper, D.N.C., Clark, J.F. (2013). Role of Bilirubin Oxidation Products in the Pathophysiology of DIND Following SAH. In: Zuccarello, M., Clark, J., Pyne-Geithman, G., Andaluz, N., Hartings, J., Adeoye, O. (eds) Cerebral Vasospasm: Neurovascular Events After Subarachnoid Hemorrhage. Acta Neurochirurgica Supplement, vol 115. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1192-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1192-5_47

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1191-8

  • Online ISBN: 978-3-7091-1192-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics