Skip to main content

Synaptic Protein Degradation in Memory Reorganization

  • Chapter
  • First Online:
Synaptic Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((volume 970))

Abstract

The ubiquitin-proteasome system (UPS) is a ubiquitous, major pathway of protein degradation that is involved in most cellular processes by regulating the abundance of certain proteins. Accumulating evidence indicates a role for the UPS in specific functions of neurons. In this chapter, we first introduce the role of the UPS in neuronal function and the mechanism of UPS regulation following synaptic activity. Then, we focus on the recently revealed, distinct role of the UPS in the destabilization of a reactivated memory. Finally, we discuss the physiological role of this destabilization process. The reactivated memory may undergo modification from the initial memory depending on the context in which the memory is reactivated, which we will term memory reorganization. We will introduce the role of the protein degradation–dependent destabilization process for memory reorganization and suggest a hypothetical model combining the recent findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aakalu, G., Smith, W. B., Nguyen, N., Jiang, C., & Schuman, E. M. (2001). Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron, 30(2), 489–502. doi:S0896-6273(01)00295-1 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Arancibia-Carcamo, I. L., Yuen, E. Y., Muir, J., Lumb, M. J., Michels, G., Saliba, R. S., Smart, T. G., Yan, Z., Kittler, J. T., & Moss, S. J. (2009). Ubiquitin-dependent lysosomal targeting of GABA(A) receptors regulates neuronal inhibition. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17552–17557. doi:0905502106 [pii] 10.1073/pnas.0905502106.

    Article  PubMed  CAS  Google Scholar 

  • Artinian, J., McGauran, A. M., De Jaeger, X., Mouledous, L., Frances, B., & Roullet, P. (2008). Protein degradation, as with protein synthesis, is required during not only long-term spatial memory consolidation but also reconsolidation. The European Journal of Neuroscience, 27(11), 3009–3019. doi:EJN6262 [pii] 10.1111/j.1460-9568.2008.06262.x.

    Article  PubMed  Google Scholar 

  • Bedford, F. K., Kittler, J. T., Muller, E., Thomas, P., Uren, J. M., Merlo, D., Wisden, W., Triller, A., Smart, T. G., & Moss, S. J. (2001). GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nature Neuroscience, 4(9), 908–916. doi:10.1038/nn0901-908 nn0901-908 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Ben Mamou, C., Gamache, K., & Nader, K. (2006). NMDA receptors are critical for unleashing consolidated auditory fear memories. Nature Neuroscience, 9(10), 1237–1239. doi:nn1778 [pii] 10.1038/nn1778.

    Article  PubMed  CAS  Google Scholar 

  • Bingol, B., & Schuman, E. M. (2006). Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature, 441(7097), 1144–1148. doi:nature04769 [pii] 10.1038/nature04769.

    Article  PubMed  CAS  Google Scholar 

  • Bingol, B., Wang, C. F., Arnott, D., Cheng, D., Peng, J., & Sheng, M. (2010). Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell, 140(4), 567–578. doi:S0092-8674(10)00059-0 [pii] 10.1016/j.cell.2010.01.024.

    Article  PubMed  CAS  Google Scholar 

  • Brown, T. E., Lee, B. R., & Sorg, B. A. (2008). The NMDA antagonist MK-801 disrupts reconsolidation of a cocaine-associated memory for conditioned place preference but not for self-administration in rats. Learning and Memory, 15(12), 857–865. doi:15/12/857 [pii] 10.1101/lm.1152808.

    Article  PubMed  Google Scholar 

  • Burbea, M., Dreier, L., Dittman, J. S., Grunwald, M. E., & Kaplan, J. M. (2002). Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans. Neuron, 35(1), 107–120. doi:doi:S0896627302007493 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Cartier, A. E., Djakovic, S. N., Salehi, A., Wilson, S. M., Masliah, E., & Patrick, G. N. (2009). Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1. The Journal of Neuroscience, 29(24), 7857–7868. doi:29/24/7857 [pii] 10.1523/JNEUROSCI.1817-09.2009.

    Article  PubMed  CAS  Google Scholar 

  • Choi, J. H., Kim, J. E., & Kaang, B. K. (2010). Protein synthesis and degradation are required for the incorporation of modified information into the pre-existing object-location memory. Molecular Brain, 3, 1. doi:1756-6606-3-1 [pii] 10.1186/1756-6606-3-1.

    Article  PubMed  Google Scholar 

  • Colledge, M., Snyder, E. M., Crozier, R. A., Soderling, J. A., Jin, Y., Langeberg, L. K., Lu, H., Bear, M. F., & Scott, J. D. (2003). Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron, 40(3), 595–607. doi:S0896627303006871 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Debiec, J., LeDoux, J. E., & Nader, K. (2002). Cellular and systems reconsolidation in the hippocampus. Neuron, 36(3), 527–538. doi:S0896627302010012 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Deng, P. Y., & Lei, S. (2007). Long-term depression in identified stellate neurons of juvenile rat entorhinal cortex. Journal of Neurophysiology, 97(1), 727–737. doi:01089.2006 [pii] 10.1152/jn.01089.2006.

    Article  PubMed  Google Scholar 

  • DiAntonio, A., Haghighi, A. P., Portman, S. L., Lee, J. D., Amaranto, A. M., & Goodman, C. S. (2001). Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature, 412(6845), 449–452. doi:10.1038/35086595 35086595 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Ding, M., Chao, D., Wang, G., & Shen, K. (2007). Spatial regulation of an E3 ubiquitin ligase directs selective synapse elimination. Science, 317(5840), 947–951. doi:1145727 [pii] 10.1126/science.1145727.

    Article  PubMed  CAS  Google Scholar 

  • Djakovic, S. N., Schwarz, L. A., Barylko, B., DeMartino, G. N., & Patrick, G. N. (2009). Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. The Journal of Biological Chemistry, 284(39), 26655–26665. doi:M109.021956 [pii] 10.1074/jbc.M109.021956.

    Article  PubMed  CAS  Google Scholar 

  • Dreier, L., Burbea, M., & Kaplan, J. M. (2005). LIN-23-mediated degradation of beta-catenin regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans. Neuron, 46(1), 51–64. doi:doi:S0896-6273(05)00161-3 [pii] 10.1016/j.neuron.2004.12.058.

    Article  PubMed  CAS  Google Scholar 

  • Dudai, Y. (2006). Reconsolidation: The advantage of being refocused. Current Opinion in Neurobiology, 16(2), 174–178. doi:S0959-4388(06)00035-3 [pii] 10.1016/j.conb.2006.03.010.

    Article  PubMed  CAS  Google Scholar 

  • Dudai, Y., & Eisenberg, M. (2004). Rites of passage of the engram: Reconsolidation and the lingering consolidation hypothesis. Neuron, 44(1), 93–100. doi:10.1016/j.neuron.2004.09.003 S0896627304005720 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Ehlers, M. D. (2003). Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nature Neuroscience, 6(3), 231–242. doi:10.1038/nn1013 nn1013 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Fonseca, R., Vabulas, R. M., Hartl, F. U., Bonhoeffer, T., & Nagerl, U. V. (2006). A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron, 52(2), 239–245. doi:S0896-6273(06)00637-4 [pii] 10.1016/j.neuron.2006.08.015.

    Article  PubMed  CAS  Google Scholar 

  • Frankland, P. W., & Bontempi, B. (2005). The organization of recent and remote memories. Nature Reviews Neuroscience, 6(2), 119–130. doi:nrn1607 [pii] 10.1038/nrn1607.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-DeLaTorre, P., Rodriguez-Ortiz, C. J., Arreguin-Martinez, J. L., Cruz-Castaneda, P., & Bermudez-Rattoni, F. (2009). Simultaneous but not independent anisomycin infusions in insular cortex and amygdala hinder stabilization of taste memory when updated. Learning and Memory, 16(9), 514–519. doi:16/9/514 [pii] 10.1101/lm.1356509.

    Article  PubMed  Google Scholar 

  • Haas, K. F., Miller, S. L., Friedman, D. B., & Broadie, K. (2007). The ubiquitin-proteasome system postsynaptically regulates glutamatergic synaptic function. Molecular and Cellular Neuroscience, 35(1), 64–75. doi:S1044-7431(07)00027-9 [pii] 10.1016/j.mcn.2007.02.002.

    Article  PubMed  CAS  Google Scholar 

  • Hoogenraad, C. C., Feliu-Mojer, M. I., Spangler, S. A., Milstein, A. D., Dunah, A. W., Hung, A. Y., & Sheng, M. (2007). Liprinalpha1 degradation by calcium/calmodulin-dependent protein kinase II regulates LAR receptor tyrosine phosphatase distribution and dendrite development. Developmental Cell, 12(4), 587–602. doi:S1534-5807(07)00056-1 [pii] 10.1016/j.devcel.2007.02.006.

    Article  PubMed  CAS  Google Scholar 

  • Hou, L., Antion, M. D., Hu, D., Spencer, C. M., Paylor, R., & Klann, E. (2006). Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron, 51(4), 441–454. doi:S0896-6273(06)00545-9 [pii] 10.1016/j.neuron.2006.07.005.

    Article  PubMed  CAS  Google Scholar 

  • Hung, A. Y., Sung, C. C., Brito, I. L., & Sheng, M. (2010). Degradation of postsynaptic scaffold GKAP and regulation of dendritic spine morphology by the TRIM3 ubiquitin ligase in rat hippocampal neurons. PLoS One, 5(3), e9842. doi:10.1371/journal.pone.0009842.

    Article  PubMed  Google Scholar 

  • Itzhak, Y. (2008). Role of the NMDA receptor and nitric oxide in memory reconsolidation of cocaine-induced conditioned place preference in mice. Annals of the New York Academy of Sciences, 1139, 350–357. doi:NYAS1139051 [pii] 10.1196/annals.1432.051.

    Article  PubMed  CAS  Google Scholar 

  • Juo, P., & Kaplan, J. M. (2004). The anaphase-promoting complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans. Current Biology, 14(22), 2057–2062. doi:doi:S0960982204008802 [pii] 10.1016/j.cub.2004.11.010.

    Article  PubMed  CAS  Google Scholar 

  • Kaang, B. K., Lee, S. H., & Kim, H. (2009). Synaptic protein degradation as a mechanism in memory reorganization. The Neuroscientist, 15(5), 430–435. doi:1073858408331374 [pii] 10.1177/1073858408331374.

    Article  PubMed  Google Scholar 

  • Karpova, A., Mikhaylova, M., Thomas, U., Knopfel, T., & Behnisch, T. (2006). Involvement of protein synthesis and degradation in long-term potentiation of Schaffer collateral CA1 synapses. The Journal of Neuroscience, 26(18), 4949–4955. doi:26/18/4949 [pii] 10.1523/JNEUROSCI.4573-05.2006.

    Article  PubMed  CAS  Google Scholar 

  • Kato, A., Rouach, N., Nicoll, R. A., & Bredt, D. S. (2005). Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 102(15), 5600–5605. doi:0501769102 [pii] 10.1073/pnas.0501769102.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J., Lee, S., Park, K., Hong, I., Song, B., Son, G., Park, H., Kim, W. R., Park, E., Choe, H. K., Kim, H., Lee, C., Sun, W., Kim, K., Shin, K. S., & Choi, S. (2007). Amygdala depotentiation and fear extinction. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20955–20960. doi:0710548105 [pii] 10.1073/pnas.0710548105.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J., Park, S., Lee, S., & Choi, S. (2009). Amygdala depotentiation ex vivo requires mitogen-activated protein kinases and protein synthesis. Neuroreport, 20(5), 517–520. doi:10.1097/WNR.0b013e328329412d.

    Article  PubMed  CAS  Google Scholar 

  • Lattal, K. M., Radulovic, J., & Lukowiak, K. (2006). Extinction: [corrected] does it or doesn’t it? The requirement of altered gene activity and new protein synthesis. Biological Psychiatry, 60(4), 344–351. doi:S0006-3223(06)00766-9 [pii] 10.1016/j.biopsych.2006.05.038.

    Article  PubMed  Google Scholar 

  • Lee, J. L. (2008). Memory reconsolidation mediates the strengthening of memories by additional learning. Nature Neuroscience, 11(11), 1264–1266. doi:nn.2205 [pii] 10.1038/nn.2205.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. H., Choi, J. H., Lee, N., Lee, H. R., Kim, J. I., Yu, N. K., Choi, S. L., Kim, H., & Kaang, B. K. (2008). Synaptic protein degradation underlies destabilization of retrieved fear memory. Science, 319(5867), 1253–1256. doi:1150541 [pii] 10.1126/science.1150541.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. L., & Everitt, B. J. (2008). Appetitive memory reconsolidation depends upon NMDA receptor-mediated neurotransmission. Neurobiology of Learning and Memory, 90(1), 147–154. doi:S1074-7427(08)00031-2 [pii] 10.1016/j.nlm.2008.02.004.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. L., Everitt, B. J., & Thomas, K. L. (2004). Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science, 304(5672), 839–843. doi:10.1126/science.1095760 1095760 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. L., Milton, A. L., & Everitt, B. J. (2006). Reconsolidation and extinction of conditioned fear: Inhibition and potentiation. The Journal of Neuroscience, 26(39), 10051–10056. doi:26/39/10051 [pii] 10.1523/JNEUROSCI.2466-06.2006.

    Article  PubMed  CAS  Google Scholar 

  • Liao, E. H., Hung, W., Abrams, B., & Zhen, M. (2004). An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature, 430(6997), 345–350. doi:10.1038/nature02647 nature02647 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Merlo, E., & Romano, A. (2007). Long-term memory consolidation depends on proteasome activity in the crab Chasmagnathus. Neuroscience, 147(1), 46–52. doi:S0306-4522(07)00520-9 [pii] 10.1016/j.neuroscience.2007.04.022.

    Article  PubMed  CAS  Google Scholar 

  • Milton, A. L., Lee, J. L., Butler, V. J., Gardner, R., & Everitt, B. J. (2008). Intra-amygdala and systemic antagonism of NMDA receptors prevents the reconsolidation of drug-associated memory and impairs subsequently both novel and previously acquired drug-seeking behaviors. The Journal of Neuroscience, 28(33), 8230–8237. doi:28/33/8230 [pii] 10.1523/JNEUROSCI.1723-08.2008.

    Article  PubMed  CAS  Google Scholar 

  • Morris, R. G., Inglis, J., Ainge, J. A., Olverman, H. J., Tulloch, J., Dudai, Y., & Kelly, P. A. (2006). Memory reconsolidation: Sensitivity of spatial memory to inhibition of protein synthesis in dorsal hippocampus during encoding and retrieval. Neuron, 50(3), 479–489. doi:S0896-6273(06)00280-7 [pii] 10.1016/j.neuron.2006.04.012.

    Article  PubMed  CAS  Google Scholar 

  • Nader, K., & Hardt, O. (2009). A single standard for memory: The case for reconsolidation. Nature Reviews Neuroscience, 10(3), 224–234. doi:nrn2590 [pii] 10.1038/nrn2590.

    Article  PubMed  CAS  Google Scholar 

  • Nader, K., Schafe, G. E., & Le Doux, J. E. (2000). Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 406(6797), 722–726. doi:10.1038/35021052.

    Article  PubMed  CAS  Google Scholar 

  • Ostroff, L. E., Fiala, J. C., Allwardt, B., & Harris, K. M. (2002). Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron, 35(3), 535–545. doi:S0896627302007857 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Pak, D. T., & Sheng, M. (2003). Targeted protein degradation and synapse remodeling by an inducible protein kinase. Science, 302(5649), 1368–1373. doi:10.1126/science.1082475 1082475 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Patrick, G. N., Bingol, B., Weld, H. A., & Schuman, E. M. (2003). Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs. Current Biology, 13(23), 2073–2081. doi:S0960982203007826 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, B. E., & Huber, K. M. (2006). Current advances in local protein synthesis and synaptic plasticity. The Journal of Neuroscience, 26(27), 7147–7150. doi:26/27/7147 [pii] 10.1523/JNEUROSCI.1797-06.2006.

    Article  PubMed  CAS  Google Scholar 

  • Quirk, G. J., & Mueller, D. (2008). Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology, 33(1), 56–72. doi:1301555 [pii] 10.1038/sj.npp. 1301555.

    Article  PubMed  Google Scholar 

  • Rodriguez-Ortiz, C. J., De la Cruz, V., Gutierrez, R., & Bermudez-Rattoni, F. (2005). Protein synthesis underlies post-retrieval memory consolidation to a restricted degree only when updated information is obtained. Learning and Memory, 12(5), 533–537. doi:lm.94505 [pii] 10.1101/lm.94505.

    Article  PubMed  Google Scholar 

  • Rodriguez-Ortiz, C. J., Garcia-DeLaTorre, P., Benavidez, E., Ballesteros, M. A., & Bermudez-Rattoni, F. (2008). Intrahippocampal anisomycin infusions disrupt previously consolidated spatial memory only when memory is updated. Neurobiology of Learning and Memory, 89(3), 352–359. doi:S1074-7427(07)00168-2 [pii] 10.1016/j.nlm.2007.10.004.

    Article  PubMed  CAS  Google Scholar 

  • Rossato, J. I., Bevilaqua, L. R., Myskiw, J. C., Medina, J. H., Izquierdo, I., & Cammarota, M. (2007). On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learning and Memory, 14(1), 36–46. doi:14/1/36 [pii] 10.1101/lm.422607.

    Article  PubMed  Google Scholar 

  • Schaefer, A. M., Hadwiger, G. D., & Nonet, M. L. (2000). rpm-1, a conserved neuronal gene that regulates targeting and synaptogenesis in C. elegans. Neuron, 26(2), 345–356. doi:doi:S0896-6273(00)81168-X [pii].

    Article  PubMed  CAS  Google Scholar 

  • Shen, H., Korutla, L., Champtiaux, N., Toda, S., LaLumiere, R., Vallone, J., Klugmann, M., Blendy, J. A., Mackler, S. A., & Kalivas, P. W. (2007). NAC1 regulates the recruitment of the proteasome complex into dendritic spines. The Journal of Neuroscience, 27(33), 8903–8913. doi:27/33/8903 [pii] 10.1523/JNEUROSCI.1571-07.2007.

    Article  PubMed  CAS  Google Scholar 

  • Speese, S. D., Trotta, N., Rodesch, C. K., Aravamudan, B., & Broadie, K. (2003). The ubiquitin proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy. Current Biology, 13(11), 899–910. doi:S0960982203003385 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, A., Josselyn, S. A., Frankland, P. W., Masushige, S., Silva, A. J., & Kida, S. (2004). Memory reconsolidation and extinction have distinct temporal and biochemical signatures. The Journal of Neuroscience, 24(20), 4787–4795. doi:10.1523/JNEUROSCI.5491-03.2004 24/20/4787 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, A., Mukawa, T., Tsukagoshi, A., Frankland, P. W., & Kida, S. (2008). Activation of LVGCCs and CB1 receptors required for destabilization of reactivated contextual fear memories. Learning and Memory, 15(6), 426–433. doi:15/6/426 [pii] 10.1101/lm.888808.

    Article  PubMed  CAS  Google Scholar 

  • Tada, H., Okano, H. J., Takagi, H., Shibata, S., Yao, I., Matsumoto, M., Saiga, T., Nakayama, K. I., Kashima, H., Takahashi, T., Setou, M., & Okano, H. (2010). Fbxo45, a novel ubiquitin ligase, regulates synaptic activity. The Journal of Biological Chemistry, 285(6), 3840–3849. doi:M109.046284 [pii] 10.1074/jbc.M109.046284.

    Article  PubMed  CAS  Google Scholar 

  • Tronson, N. C., & Taylor, J. R. (2007). Molecular mechanisms of memory reconsolidation. Nature Reviews Neuroscience, 8(4), 262–275. doi:nrn2090 [pii] 10.1038/nrn2090.

    Article  PubMed  CAS  Google Scholar 

  • Tronson, N. C., Wiseman, S. L., Olausson, P., & Taylor, J. R. (2006). Bidirectional behavioral plasticity of memory reconsolidation depends on amygdalar protein kinase A. Nature Neuroscience, 9(2), 167–169. doi:nn1628 [pii] 10.1038/nn1628.

    Article  PubMed  CAS  Google Scholar 

  • van Roessel, P., Elliott, D. A., Robinson, I. M., Prokop, A., & Brand, A. H. (2004). Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell, 119(5), 707–718. doi:S0092867404010967 [pii] 10.1016/j.cell.2004.11.028.

    Article  PubMed  Google Scholar 

  • Wan, H. I., DiAntonio, A., Fetter, R. D., Bergstrom, K., Strauss, R., & Goodman, C. S. (2000). Highwire regulates synaptic growth in Drosophila. Neuron, 26(2), 313–329. doi:S0896-6273(00)81166-6 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Wang, S. H., de Oliveira, A. L., & Nader, K. (2009). Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation. Nature Neuroscience, 12(7), 905–912. doi:nn.2350 [pii] 10.1038/nn.2350.

    Article  PubMed  CAS  Google Scholar 

  • Willeumier, K., Pulst, S. M., & Schweizer, F. E. (2006). Proteasome inhibition triggers activity-dependent increase in the size of the recycling vesicle pool in cultured hippocampal neurons. The Journal of Neuroscience, 26(44), 11333–11341. doi:26/44/11333 [pii] 10.1523/JNEUROSCI.1684-06.2006.

    Article  PubMed  CAS  Google Scholar 

  • Winters, B. D., Tucci, M. C., & DaCosta-Furtado, M. (2009). Older and stronger object memories are selectively destabilized by reactivation in the presence of new information. Learning and Memory, 16(9), 545–553. doi:16/9/545 [pii] 10.1101/lm.1509909.

    Article  PubMed  Google Scholar 

  • Wood, M. A., Kaplan, M. P., Brensinger, C. M., Guo, W., & Abel, T. (2005). Ubiquitin C-terminal hydrolase L3 (Uchl3) is involved in working memory. Hippocampus, 15(5), 610–621. doi:10.1002/hipo.20082.

    Article  PubMed  CAS  Google Scholar 

  • Yao, I., Takagi, H., Ageta, H., Kahyo, T., Sato, S., Hatanaka, K., Fukuda, Y., Chiba, T., Morone, N., Yuasa, S., Inokuchi, K., Ohtsuka, T., Macgregor, G. R., Tanaka, K., & Setou, M. (2007). SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release. Cell, 130(5), 943–957. doi:S0092-8674(07)00902-6 [pii] 10.1016/j.cell.2007.06.052.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Creative Research Initiative Program and WCU program of the Korean Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong-Kiun Kaang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Kaang, BK., Choi, JH. (2012). Synaptic Protein Degradation in Memory Reorganization. In: Kreutz, M., Sala, C. (eds) Synaptic Plasticity. Advances in Experimental Medicine and Biology, vol 970. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0932-8_10

Download citation

Publish with us

Policies and ethics