Skip to main content

Moleküle definieren unsere Nahrung

  • Chapter
  • First Online:
Biophysik der Ernährung
  • 3357 Accesses

Zusammenfassung

Vom Anbeginn des Universums, über die Bildung von Atomen und Molekülen, von den ersten selbstorganisierten Zellen bis zu den heutigen komplexen Biosystemen folgt jeder Vorgang strikten Naturgesetzen. Daher ist es vonnöten, auch Lebensmittel und ihren Nährwert aus dieser Sicht zu betrachten. Dies eröffnet eine andere Sichtweise und erweitert selbst das Verständnis zu Ernährungsfragen, klärt manche Missverständnisse auf und eröffnet neue Perspektiven.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Bahr, B., Lemmer, B., & Piccolo, R. (2016). Quirky quarks: A cartoon guide to the fascinating realm of physics. Springer.

    Book  Google Scholar 

  2. Gribbin, J., & Gribbin, J. (1995). Am Anfang war…: Neues vom Urknall und der Evolution des Kosmos. Birkhäuser.

    Google Scholar 

  3. Klein, S. (2014). Die Tagebücher der Schöpfung: Vom Urknall zum geklonten Menschen. Fischer.

    Google Scholar 

  4. Buchmüller, W. (2016). Das Higgs-Teilchen und der Ursprung der Materie. Erkenntnis, Wissenschaft und Gesellschaft (S. 209–223). Springer.

    Google Scholar 

  5. Hänsch, T. W. (2006). Sind die Naturkonstanten konstant? Zweiter Teil des Interviews mit Theodor W. Hänsch, Physiknobelpreisträger des Jahres 2005. Physik in unserer Zeit, 37(2), 62–63.

    Google Scholar 

  6. Granold, M., Hajieva, P., Toşa, M. I., Irimie, F. D., & Moosmann, B. (2017). Modern diversification of the amino acid repertoire driven by oxygen. Proceedings of the National Academy of Sciences, 115(1), 41–46.

    Google Scholar 

  7. Doig, A. J. (2017). Frozen, but no accident – Why the 20 standard amino acids were selected. The FEBS journal, 284(9), 1296–1305.

    Article  CAS  Google Scholar 

  8. Mouritsen, o G. (2014). Life – As a matter of fat: The emerging science of lipidomics. Springer.

    Google Scholar 

  9. Galtier, N., Tourasse, N., & Gouy, M. (1999). A nonhyperthermophilic common ancestor to extant life forms. Science, 283(5399), 220–221.

    Article  CAS  Google Scholar 

  10. Reisinger, B., Sperl, J., Holinski, A., Schmid, V., Rajendran, C., Carstensen, L., & Sterner, R. (2013). Evidence for the existence of elaborate enzyme complexes in the Paleoarchean era. Journal of the American Chemical Society, 136(1), 122–129.

    Article  Google Scholar 

  11. Wunn, I. (2005). Die Religionen in vorgeschichtlicher Zeit (2. Aufl.). Kohlhammer.

    Google Scholar 

  12. Drennan, R. D. (1976). Religion and Social Evolution in Formative Mesoamerica. InThe Early Mesoamerican Village, edited by KV Flannery.

    Google Scholar 

  13. Pfälzner, P. (2001). Auf den Spuren der Ahnen. Überlegungen zur Nachweisbarkeit der Ahnenverehrung in Vorderasien vom Neolithikum bis in die Bronzezeit. Universitätsbibliothek Heidelberg.

    Google Scholar 

  14. Reimann, J. (2014). Kreationismus vs. Evolution. GRIN Verlag.

    Google Scholar 

  15. https://www.zeit.de/2016/06/ernaehrung-essen-palaeo-vegan; https://www1.wdr.de/fernsehen/quarks/gesunde-ernaehrung-essen-als-religion-100.html.

  16. Schubert, A. (2018). Gott essen: eine kulinarische Geschichte des Abendmahls. Beck

    Google Scholar 

  17. Harris, M. (2001). Cultural materialism: The struggle for a science of culture. AltaMira Press.

    Google Scholar 

  18. Blasi, D. E., Moran, S., Moisik, S. R., Widmer, P., Dediu, D., & Bickel, B. (2019). Human sound systems are shaped by post-Neolithic changes in bite configuration. Science, 363(6432), eaav3218.

    Google Scholar 

  19. Søe, M. J., Nejsum, P., Seersholm, F. V., Fredensborg, B. L., Habraken, R., Haase, K., Hald, M. M., Simonsen, R., Højlund, F., Blanke, L., Merkyte, I., Willerslev, E., Moliin, C., & Kapel, O. (2018). Ancient DNA from latrines in Northern Europe and the Middle East (500 BC–1700 AD) reveals past parasites and diet. PLoS ONE, 13(4), e0195481.

    Google Scholar 

  20. Vié, B. (2011). Testicles: Balls in cooking and culture. Prospect Books.

    Google Scholar 

  21. Schönberger, M., & Zipprick, J. (2011). 100 Dinge, die Sie einmal im Leben gegessen haben sollten. Ludwig.

    Google Scholar 

  22. https://www.zeit.de/wirtschaft/2018-03/tierschutz-fleischproduktion-tierschutzgesetz-verbraucher-fleischkonsum-5vor8.

  23. Ströhle, A., Wolters, M., & Hahn, A. (2015). Rotes Fleisch – vom gehaltvollen Nährstofflieferanten zum kanzerogenen Agens. Ernährung im Fokus, 15–09.

    Google Scholar 

  24. Hausen, H. (2012). Red meat consumption and cancer: reasons to suspect involvement of bovine infectious factors in colorectal cancer. International Journal of Cancer, 130(11), 2475–2483

    Google Scholar 

  25. Schoenfeld, J. D., & Ioannidis, J. P. (2012). Is everything we eat associated with cancer? A systematic cookbook review. The American journal of clinical nutrition, 97(1), 127–134.

    Article  Google Scholar 

  26. Seiwert, N., Wecklein, S., Demuth, P., Hasselwander, S., Kemper, T. A., Schwerdtle, T., Brunner, T., & Fahrer, J. (2020). Heme oxygenase 1 protects human colonocytes against ROS formation, oxidative DNA damage and cytotoxicity induced by heme iron, but not inorganic iron. Cell death & disease, 11(9), 1–16.

    Article  Google Scholar 

  27. Corpet, D. E. (2011). Red meat and colon cancer: Should we become vegetarians, or can we make meat safer? Meat Science, 89(3), 310–316.

    Article  CAS  Google Scholar 

  28. Bergeron, N., Chiu, S., Williams, P. T., King, M. S., & Krauss, R. M. (2019). Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: A randomized controlled trial. The American journal of clinical nutrition., 110(3), 24–33.

    Article  Google Scholar 

  29. Kwok, R. H. (1968). Chinese-restaurant syndrome. The New England Journal of Medicine, 278(14), 796.

    Article  CAS  Google Scholar 

  30. Rassin, D. K., Sturman, J. A., & Gaull, G. E. (1978). Taurine and other free amino acids in milk of man and other mammals. Early Human Development, 2(1), 1–13.

    Article  CAS  Google Scholar 

  31. Baldeón, M. E., Mennella, J. A., Flores, N., Fornasini, M., & San Gabriel, A. (2014). Free amino acid content in breast milk of adolescent and adult mothers in Ecuador. SpringerPlus, 3(1), 104.

    Google Scholar 

  32. Li, X., Staszewski, L., Xu, H., Durick, K., Zoller, M., & Adler, E. (2002). Human receptors for sweet and umami taste. Proceedings of the National Academy of Sciences, 99(7), 4692–4696.

    Article  CAS  Google Scholar 

  33. Behrens, M., Meyerhof, W., Hellfritsch, C., & Hofmann, T. (2011). Moleküle und biologische Mechanismen des Süß- und Umamigeschmacks. Angewandte Chemie, 123(10), 2268–2291.

    Google Scholar 

  34. Ninomiya, K. (2015). Science of umami taste: Adaptation to gastronomic culture. Flavour, 4(1), 13.

    Article  Google Scholar 

  35. Kurihara, K. (2009). Glutamate: from discovery as a food flavor to role as a basic taste (umami). The American Journal of Clinical Nutrition, 90(3), 719S–722S

    Google Scholar 

  36. Dunkel, A., & Hofmann, T. (2009). Sensory-directed identification of β-alanyl dipeptides as contributors to the thick-sour and white-meaty orosensation induced by chicken broth. Journal of Agricultural and Food Chemistry, 57(21), 9867–9877.

    Article  CAS  Google Scholar 

  37. Löffler, M. (2014). Pathobiochemie des Purin- und Pyrimidinstoffwechsels. Löffler/Petrides Biochemie und Pathobiochemie (S. 372–378). Springer.

    Google Scholar 

  38. Wolfram, G., & Colling, M. (1987). Gesamtpuringehalt in ausgewählten Lebensmitteln. Zeitschrift für Ernährungswissenschaft, 26(4), 205–213.

    Article  CAS  Google Scholar 

  39. Wifall, T. C., Faes, T. M., Taylor-Burds, C. C., Mitzelfelt, J. D., & Delay, E. R. (2006). An analysis of 5′-inosine and 5′-guanosine monophosphate taste in rats. Chemical Senses, 32(2), 161–172.

    Article  Google Scholar 

  40. Yamaguchi, S. (1967). The synergistic taste effect of monosodium glutamate and disodium 5′-inosinate. Journal of Food Science, 32(4), 473–478.

    Article  CAS  Google Scholar 

  41. Mouritsen, O. G., Duelund, L., Bagatolli, L. A., & Khandelia, H. (2013). The name of deliciousness and the gastrophysics behind it. Flavour, 2(1), 9.

    Article  Google Scholar 

  42. Mouritsen, O. G., & Khandelia, H. (2012). Molecular mechanism of the allosteric enhancement of the umami taste sensation. The FEBS Journal, 279(17), 3112–3120.

    Article  CAS  Google Scholar 

  43. Grimm, H. U. (2011). Die Ernährungslüge: Wie uns die Lebensmittelindustrie um den Verstand bringt. EBook.

    Google Scholar 

  44. https://praxistipps.focus.de/ist-hefeextrakt-schaedlich-verstaendlich-erklaert_55558.

  45. Nout, M. J. R. (1994). Fermented foods and food safety. Food Research International, 27(3), 291–298.

    Article  CAS  Google Scholar 

  46. Linares, D. M., del Rio, B., Redruello, B., Ladero, V., Martin, M. C., Fernandez, M., & Alvarez, M. A. (2016). Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chemistry, 197, 658–663.

    Article  CAS  Google Scholar 

  47. Shalaby, A. R. (1996). Significance of biogenic amines to food safety and human health. Food Research International, 29(7), 675–690.

    Article  CAS  Google Scholar 

  48. Brown, R. E., & Haas, H. L. (1999). On the mechanism of histaminergic inhibition of glutamate release in the rat dentate gyrus. The Journal of Physiology, 515(3), 777–786.

    Article  CAS  Google Scholar 

  49. Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., Gänzle, M., Kort, R., Pasin, G., Pihlanto, A., Smid, E. J., & Hutkins, R. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102.

    Article  CAS  Google Scholar 

  50. Magerowski, G., Giacona, G., Patriarca, L., Papadopoulos, K., Garza-Naveda, P., Radziejowska, J., & Alonso-Alonso, M. (2018). Neurocognitive effects of umami: Association with eating behavior and food choice. Neuropsychopharmacology, 43(10), 2009–2016.

    Article  Google Scholar 

  51. Lustig, R. H., Schmidt, L. A., & Brindis, C. D. (2012). Public health: The toxic truth about sugar. Nature, 482(7383), 27.

    Article  CAS  Google Scholar 

  52. https://www.ugb.de/ernaehrungsberatung/zuckersucht/?zucker-sucht.

  53. https://www.zentrum-der-gesundheit.de/zuckersucht-ausstieg-ia.html#toc-zucker-ist-eine-droge.

  54. Shallenberger, R. S. (1963). Hydrogen bonding and the varying sweetness of the sugars. Journal of Food Science, 28(5), 584–589.

    Article  CAS  Google Scholar 

  55. DuBois, G. E. (2016). Molecular mechanism of sweetness sensation. Physiology & Behavior, 164, 453–463.

    Article  CAS  Google Scholar 

  56. Masuda, K., Koizumi, A., Nakajima, K. I., Tanaka, T., Abe, K., Misaka, T., & Ishiguro, M. (2012). Characterization of the modes of binding between human sweet taste receptor and low-molecular-weight sweet compounds. PLoS ONE, 7(4), e35380.

    Google Scholar 

  57. Jaitak, V. (2015). Interaction model of steviol glycosides from Stevia rebaudiana (Bertoni) with sweet taste receptors: A computational approach. Phytochemistry, 116, 12–20.

    Google Scholar 

  58. Leusmann, E. (2017). Stoff für Süßmäuler. Nachrichten aus der Chemie, 65(9), 887–893.

    Article  CAS  Google Scholar 

  59. Yamazaki, M., & Sakaguchi, T. (1986). Effects of d-glucose anomers on sweetness taste and insulin release in man. Brain Research Bulletin, 17(2), 271–274.

    Google Scholar 

  60. Lim, J. S., Mietus-Snyder, M., Valente, A., Schwarz, J. M., & Lustig, R. H. (2010). The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nature reviews gastroenterology and hepatology, 7(5), 251.

    Article  CAS  Google Scholar 

  61. Lustig, R. H. (2010). Fructose: Metabolic, hedonic, and societal parallels with ethanol. Journal of the American Dietetic Association, 110(9), 1307–1321.

    Article  CAS  Google Scholar 

  62. Luo, S., Monterosso, J. R., Sarpelleh, K., & Page, K. A. (2015). Differential effects of fructose versus glucose on brain and appetitive responses to food cues and decisions for food rewards. Proceedings of the National Academy of Sciences, 201503358.

    Google Scholar 

  63. Rodeck, B., & Zimmer, K. P. (2008). Pädiatrische Gastroenterologie, Hepatologie und Ernährung. Springer Medizin.

    Book  Google Scholar 

  64. McInnes, M. (2014). The honey diet. Hodder & Stoughton, London.

    Google Scholar 

  65. Woodroof, J. G. (1986). History and growth of fruit processing. Commercial fruit processing (S. 1–24). Springer.

    Google Scholar 

  66. Kappes, S. M., Schmidt, S. J., & Lee, S. Y. (2006). Mouthfeel detection threshold and instrumental viscosity of sucrose and high fructose corn syrup solutions. Journal of Food Science, 71(9), S597–S602.

    Article  CAS  Google Scholar 

  67. Goyal, S. K., Samsher, G. R., & Goyal, R. K. (2010). Stevia (Stevia rebaudiana) a bio-sweetener: A review. International Journal of Food Sciences and Nutrition, 61(1), 1–10.

    Google Scholar 

  68. Hellfritsch, C., Brockhoff, A., Stähler, F., Meyerhof, W., & Hofmann, T. (2012). Human psychometric and taste receptor responses to steviol glycosides. Journal of Agricultural and Food Chemistry, 60(27), 6782–6793.

    Article  CAS  Google Scholar 

  69. Golding, M., & Wooster, T. J. (2010). The influence of emulsion structure and stability on lipid digestion. Current Opinion in Colloid & Interface Science, 15(1–2), 90–101.

    Article  CAS  Google Scholar 

  70. Mackie, A., & Macierzanka, A. (2010). Colloidal aspects of protein digestion. Current Opinion in Colloid & Interface Science, 15(1–2), 102–108.

    Article  CAS  Google Scholar 

  71. Löffler, M. (2014). Pathobiochemie des Purin- und Pyrimidinstoffwechsels (S. 372–378). Springer.

    Google Scholar 

  72. Latscha, H. P., Kazmaier, U., & Klein, H. A. (2016). Steroide (S. 481–487). Springer Spektrum.

    Google Scholar 

  73. Armstrong, M. J., & Carey, M. C. (1982). The hydrophobic-hydrophilic balance of bile salts. Inverse correlation between reverse-phase high performance liquid chromatographic mobilities and micellar cholesterol-solubilizing capacities. Journal of lipid research, 23(1), 70–80.

    Google Scholar 

  74. Garidel, P., Hildebrand, A., Knauf, K., & Blume, A. (2007). Membranolytic activity of bile salts: Influence of biological membrane properties and composition. Molecules, 12(10), 2292–2326.

    Article  CAS  Google Scholar 

  75. Carey, M. C., Small, D. M., & Bliss, C. M. (1983). Lipid digestion and absorption. Annual Review of Physiology, 45(1), 651–677.

    Article  CAS  Google Scholar 

  76. https://www.youtube.com/watch?v=Kkc-SQsaOTk, bzw. https://www.uniklinik-freiburg.de/index.php?id=17950. https://www.derstandard.de/story/2000086168642/expertin-entschuldigt-sich-fuer-kokosoel-ist-das-reine-gift.

  77. Huang, A. H. (1996). Oleosins and oil bodies in seeds and other organs. Plant Physiology, 110(4), 1055.

    Article  CAS  Google Scholar 

  78. Zielbauer, B. I., Jackson, A. J., Maurer, S., Waschatko, G., Ghebremedhin, M., Rogers, S. E., Heenan, R. K., Porcar, L., & Vilgis, T. A. (2018). Soybean Oleosomes studied by Small Angle Neutron Scattering (SANS). Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2018.05.080.

    Article  Google Scholar 

  79. Bresinsky, A., Körner, C., Kadereit, J. W., Neuhaus, G., & Sonnewald, U. (2008). Lehrbuch der Botanik (35. Aufl.). Spektrum.

    Google Scholar 

  80. Hsieh, K., & Huang, A. H. (2004). Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cells. Plant Physiology, 136(3), 3427–3434.

    Article  CAS  Google Scholar 

  81. Maurer, S., Waschatko, G., Schach, D., Zielbauer, B. I., Dahl, J., Weidner, T., Bonn, M., & Vilgis, T. A. (2013). The role of intact oleosin for stabilization and function of oleosomes. The Journal of Physical Chemistry B, 117(44), 13872–13883.

    Article  CAS  Google Scholar 

  82. Woodford, K. (2009). Devil in the milk: Illness, health and the politics of A1 and A2 milk. Chelsea Green Publishing.

    Google Scholar 

  83. Grimm, H. U. (2016). Die Fleischlüge: Wie uns die Tierindustrie krank macht. Droemer.

    Google Scholar 

  84. Rätzer, H. (1998). Wirtschaftlichkeit verschiedener Rindertypen: Vergleich von Milch- und Zweinutzungsrassen (Doctoral dissertation, ETH Zurich).

    Google Scholar 

  85. Ternes, W. (2008). Naturwissenschaftliche Grundlagen der Lebensmittelzubereitung. Behr.

    Google Scholar 

  86. De Kruif, C. G., Huppertz, T., Urban, V. S., & Petukhov, A. V. (2012). Casein micelles and their internal structure. Advances in Colloid and Interface Science, 171, 36–52.

    Article  Google Scholar 

  87. Walstra, P. (1999). Dairy technology: Principles of milk properties and processes. CRC Press.

    Book  Google Scholar 

  88. Vilgis, T. (2010). Das Molekül-Menü: Molekulare Grundlagen für kreative Köche. Hirzel Verlag.

    Google Scholar 

  89. Gallier, S., Ye, A., & Singh, H. (2012). Structural changes of bovine milk fat globules during in vitro digestion. Journal of Dairy Science, 95(7), 3579–3592.

    Article  CAS  Google Scholar 

  90. Overbeck, P. (2014). Freispruch für Kuhmilch. MMW-Fortschritte der Medizin, 156(13), 29

    Google Scholar 

  91. http://www.kern.bayern.de/wissenschaft/107510/index.php.

  92. Grimm, H. U. (2016). Die Fleischlüge – wie uns die Tierindustrie krank macht. Droemer.

    Google Scholar 

  93. Reddy, I. M., Kella, N. K., & Kinsella, J. E. (1988). Structural and conformational basis of the resistance of beta-lactoglobulin to peptic and chymotryptic digestion. Journal of Agricultural and Food Chemistry, 36(4), 737–741.

    Google Scholar 

  94. Melnik, B. C. (2012). Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World Journal of Diabetes, 3(3), 38–53.

    Article  Google Scholar 

  95. Melnik, B. C. (2009). Milk – the promoter of chronic Western diseases. Medical Hypotheses, 72(6), 631–639.

    Google Scholar 

  96. Bruker, M. O., Jung, M., Gutjahr, I., & Gutjahr, I. (2011). Der Murks mit der Milch: [Gesundheitsgefährdung durch Industriemilch; Genmanipulation und Turbokuh; vom Lebensmittel zum Industrieprodukt]. emu-Verlag.

    Google Scholar 

  97. http://www.realmilk.com/safety/safety-of-raw-milk/.

  98. Grimm, H. U. (2016). Die Fleischlüge – wie uns die Tierindustrie krank macht. Droemer.

    Google Scholar 

  99. Marshall, K. (2004). Therapeutic applications of whey protein. Alternative medicine review, 9(2), 136–157.

    Google Scholar 

  100. Bounous, G., Batist, G., & Gold, P. (1989). Mice: Role of glutathione. Clinical and Investigative Medicine, 12(3), 154–161.

    CAS  Google Scholar 

  101. Töpel, A. (2007). Chemie und Physik der Milch: Naturstoff, Rohstoff, Lebensmittel (S. 386). BehrE.

    Google Scholar 

  102. Lopez, C. (2005). Focus on the supramolecular structure of milk fat in dairy products. Reproduction, Nutrition, Development, 45(4), 497–511.

    Article  CAS  Google Scholar 

  103. Kielczewska, K., Kruk, A., Czerniewicz, M., & Haponiuk, E. (2006). Effects of high-pressure-homogenization on the physicochemical properties of milk with various fat concentrations. Polish Journal of Food and Nutrition Science, 15, 91–94.

    CAS  Google Scholar 

  104. Dahlke, R. (2011). Peace Food. Wie der Verzicht auf Fleisch und Milch Körper und Seele heilt. Gräfe und Unzer.

    Google Scholar 

  105. Ye, A., Cui, J., & Singh, H. (2010). Effect of the fat globule membrane on in vitro digestion of milk fat globules with pancreatic lipase. International Dairy Journal, 20(12), 822–829.

    Article  CAS  Google Scholar 

  106. Berton, A., Rouvellac, S., Robert, B., Rousseau, F., Lopez, C., & Crenon, I. (2012). Effect of the size and interface composition of milk fat globules on their in vitro digestion by the human pancreatic lipase: Native versus homogenized milk fat globules. Food Hydrocolloids, 29(1), 123–134.

    Article  CAS  Google Scholar 

  107. Miralles, B., del Barrio, R., Cueva, C., Recio, I., & Amigo, L. (2018). Dynamic gastric digestion of a commercial whey protein concentrate. Journal of the Science of Food and Agriculture, 98(5), 1873–1879.

    Article  CAS  Google Scholar 

  108. Oster, K. A. (1973). Evaluation of serum cholesterol reduction and xanthine oxidase inhibition in the treatment of atherosclerosis. Recent advances in studies on cardiac structure and metabolism, 3, 73.

    CAS  Google Scholar 

  109. Sharma, P., Oey, I., & Everett, D. W. (2016). Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk. Food Chemistry, 207, 34–42.

    Article  CAS  Google Scholar 

  110. https://www.uniprot.org/uniprot/P02666.

  111. Kamiński, S., Cieślińska, A., & Kostyra, E. (2007). Polymorphism of bovine beta-casein and its potential effect on human health. Journal of applied genetics, 48(3), 189–198.

    Article  Google Scholar 

  112. Jinsmaa, Y., & Yoshikawa, M. (1999). Enzymatic release of neocasomorphin and β-casomorphin from bovine β-casein. Peptides, 20(8), 957–962.

    Article  CAS  Google Scholar 

  113. De Noni, I. (2008). Release of β-casomorphins 5 and 7 during simulated gastro-intestinal digestion of bovine β-casein variants and milk-based infant formulas. Food Chemistry, 110(4), 897–903.

    Article  Google Scholar 

  114. Kalaydjian, A. E., Eaton, W., Cascella, N., & Fasano, A. (2006). The gluten connection: The association between schizophrenia and celiac disease. Acta Psychiatrica Scandinavica, 113(2), 82–90.

    Article  CAS  Google Scholar 

  115. Haq, M. R. U., Kapila, R., Sharma, R., Saliganti, V., & Kapila, S. (2014). Comparative evaluation of cow β-casein variants (A1/A2) consumption on Th 2-mediated inflammatory response in mouse gut. European Journal of Nutrition, 53(4), 1039–1049.

    Article  Google Scholar 

  116. Nguyen, D. D., Johnson, S. K., Busetti, F., & Solah, V. A. (2015). Formation and degradation of beta-casomorphins in dairy processing. Critical Reviews in Food Science and Nutrition, 55(14), 1955–1967.

    Article  CAS  Google Scholar 

  117. Meisel, H., & Schlimme, E. (1996). Bioactive peptides derived from milk proteins: Ingredients for functional foods? Kieler Milchwirtschaftliche Forschungsberichte, 48(4), 343–357.

    CAS  Google Scholar 

  118. Muehlenkamp, & Warthesen, J. J. (1996). β-Casomorphins: Analysis in cheese and susceptibility to proteolytic enzymes from Lactococcus lactis ssp. cremoris. Journal of dairy science, 79(1), 20–26.

    Google Scholar 

  119. Matar, C., & Goulet, J. (1996). β-casomorphin 4 from milk fermented by a mutant of Lactobacillus helveticus. International Dairy Journal, 6(4), 383–397.

    Google Scholar 

  120. Toelstede, S., & Hofmann, T. (2008). Sensomics mapping and identification of the key bitter metabolites in Gouda cheese. Journal of Agricultural and Food Chemistry, 56(8), 2795–2804.

    Article  CAS  Google Scholar 

  121. Asledottir, T., Le, T. T., Petrat-Melin, B., Devold, T. G., Larsen, L. B., & Vegarud, G. E. (2017). Identification of bioactive peptides and quantification of β-casomorphin-7 from bovine β-casein A1, A2 and I after ex vivo gastrointestinal digestion. International Dairy Journal, 71, 98–106.

    Article  CAS  Google Scholar 

  122. Petrat-Melin, B., Andersen, P., Rasmussen, J. T., Poulsen, N. A., Larsen, L. B., & Young, J. F. (2015). In vitro digestion of purified β-casein variants A1, A2, B, and I: Effects on antioxidant and angiotensin-converting enzyme inhibitory capacity. Journal of Dairy Science, 98(1), 15–26.

    Article  CAS  Google Scholar 

  123. Melnik, B. C., John, S. M., Carrera-Bastos, P., & Schmitz, G. (2016). Milk: A postnatal imprinting system stabilizing FoxP3 expression and regulatory T cell differentiation. Clinical and translational allergy, 6(1), 18.

    Article  Google Scholar 

  124. Melnik, B. C., John, S. M., & Schmitz, G. (2013). Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutrition journal, 12(1), 103.

    Article  CAS  Google Scholar 

  125. https://www.noz.de/deutschland-welt/gut-zu-wissen/artikel/949443/hat-milch-eine-krebsfoerdernde-wirkung.

  126. Meydan, C., Shenhar-Tsarfaty, S., & Soreq, H. (2016). MicroRNA regulators of anxiety and metabolic disorders. Trends in Molecular Medicine, 22(9), 798–812.

    Article  CAS  Google Scholar 

  127. Samuel, M., Chisanga, D., Liem, M., Keerthikumar, S., Anand, S., Ang, C. S., Adda, C. G., Versteegen, E., Markandeya, J., & Mathivanan, S. (2017). Bovine milk-derived exosomes from colostrum are enriched with proteins implicated in immune response and growth. Scientific reports, 7(1), 5933.

    Article  Google Scholar 

  128. Alsaweed, M., Hepworth, A. R., Lefevre, C., Hartmann, P. E., Geddes, D. T., & Hassiotou, F. (2015). Human milk microRNA and total RNA differ depending on milk fractionation. Journal of Cellular Biochemistry, 116(10), 2397–2407.

    Article  CAS  Google Scholar 

  129. Betker, J. L., Angle, B. M., Graner, M. W., & Anchordoquy, T. J. (2018). The potential of exosomes from cow milk for oral delivery. Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.xphs.2018.11.022.

    Article  Google Scholar 

  130. Santiano, F. E., Zyla, L. E., Verde-Arboccó, F. C., Sasso, C. V., Bruna, F. A., Pistone-Creydt, V., Lopez-Fontana, C. M., & Carón, R. W. (2019). High maternal milk intake in the postnatal life reduces the incidence of breast cancer during adulthood in rats. Journal of Developmental Origins of Health and Disease, 10(4), 479–487.

    Article  CAS  Google Scholar 

  131. Melnik, B. C., & Schmitz, G. (2019). Exosomes of pasteurized milk: Potential pathogens of Western diseases. Journal of translational medicine, 17(1), 3.

    Article  Google Scholar 

  132. Liao, Y., Du, X., Li, J., & Lönnerdal, B. (2017). Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Molecular Nutrition & Food Research, 61(11), 1700082.

    Article  Google Scholar 

  133. Panaiotov, I., Dimitrov, D. S., & Ter-Minassian-Saraga, L. (1979). Dynamics of insoluble monolayers: II Viscoelastic behavior and marangoni effect for mixed protein phospholipid films. Journal of Colloid and Interface Science, 72(1), 49–53.

    Article  CAS  Google Scholar 

  134. Denzler, R., & Stoffel, M. (2015). Uptake and function studies of maternal milk-derived microRNAs. Journal of Biological Chemistry, 290(39), 23680–23691.

    Article  Google Scholar 

  135. Title, A. C., Denzler, R., & Stoffel, M. (2015). Uptake and function studies of maternal milk-derived microRNAs. The Journal of biological chemistry, 290(39), 23680–23691.

    Google Scholar 

  136. Fujita, M., Baba, R., Shimamoto, M., Sakuma, Y., & Fujimoto, S. (2007). Molecular morphology of the digestive tract; macromolecules and food allergens are transferred intact across the intestinal absorptive cells during the neonatal-suckling period. Medical molecular morphology, 40(1), 1–7.

    Article  CAS  Google Scholar 

  137. Patel, R. M., Myers, L. S., Kurundkar, A. R., Maheshwari, A., Nusrat, A., & Lin, P. W. (2012). Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function. The American Journal of Pathology, 180(2), 626–635.

    Article  CAS  Google Scholar 

  138. Baier, S. R., Nguyen, C., Xie, F., Wood, J. R., & Zempleni, J. (2014). MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. The Journal of nutrition, 144(10), 1495–1500.

    Article  CAS  Google Scholar 

  139. Witwer, K. W. (2014). Diet-responsive mammalian miRNAs are likely endogenous. The Journal of nutrition, 144(11), 1880–1881.

    Article  CAS  Google Scholar 

  140. Denzler, R., & Stoffel, M. (2015). Reply to diet-responsive microRNAs are likely exogenous. Journal of Biological Chemistry, 290(41), 25198.

    Article  Google Scholar 

  141. Wolf, T., Baier, S. R., & Zempleni, J. (2015). The intestinal transport of bovine milk exosomes is mediated by endocytosis in human colon carcinoma caco-2 cells and rat small intestinal IEC-6 cells. The Journal of Nutrition, 145(10), 2201–2206.

    Google Scholar 

  142. Manca, S., Upadhyaya, B., Mutai, E., Desaulniers, A. T., Cederberg, R. A., White, B. R., & Zempleni, J. (2018). Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Scientific Reports, 8(1), 11321.

    Article  Google Scholar 

  143. Michalski, M. C. (2007). On the supposed influence of milk homogenization on the risk of CVD, diabetes and allergy. British Journal of Nutrition, 97(4), 598.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Vilgis .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vilgis, T.A. (2022). Moleküle definieren unsere Nahrung. In: Biophysik der Ernährung. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65108-7_4

Download citation

Publish with us

Policies and ethics